393
Views
38
CrossRef citations to date
0
Altmetric
Articles

Flexoelectric vibration analysis of nanocomposite sandwich plates

ORCID Icon, &
Pages 146-163 | Received 13 Jan 2019, Accepted 23 May 2019, Published online: 14 Jun 2019

References

  • Adhikari, B., and B. N. Singh. 2019. Dynamic response of functionally graded plates resting on two-parameter-based elastic foundation model using a quasi-3D theory. Mechanics Based Design of Structures and Machines:1. doi:10.1080/15397734.2018.1555965.
  • Amir, S. 2019. Orthotropic patterns of visco-Pasternak foundation in nonlocal vibration of orthotropic graphene sheet under thermo-magnetic fields based on new first-order shear deformation theory. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 233 (2):197–208. doi:10.1177/1464420716670929.
  • Amir, S., E. Mohammad-Rezaei Bidgoli, and E. Arshid. 2018. Size-dependent vibration analysis of a three-layered porous rectangular nano plate with piezo-electromagnetic face sheets subjected to pre loads based on SSDT. Mechanics of Advanced Materials and Structures :1–15. doi:10.1080/15376494.2018.1487612.
  • Ansari, M. I., and A. Kumar. 2019. Bending analysis of functionally graded CNT reinforced doubly curved singly ruled truncated rhombic cone. Mechanics Based Design of Structures and Machines 47 (1):67–86. doi:10.1080/15397734.2018.1519635.
  • Ansari, R., and S. Sahmani. 2011. Surface stress effects on the free vibration behavior of nanoplates. International Journal of Engineering Science 49 (11):1204–15. doi:10.1016/j.ijengsci.2011.06.005.
  • Arshid, E., and A. R. Khorshidvand. 2018. Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method. Thin-Walled Structures 125:220–33. doi:10.1016/j.tws.2018.01.007.
  • Chen, H. T., and A. K. Soh. 2012. Influence of flexoelectric effects on multiferroic nanocomposite thin bilayer films. Journal of Applied Physics 112:74104. doi:10.1063/1.4757013.
  • Ghorbanpour Arani, A., E. Haghparast, and H. BabaAkbar-Zarei. 2016a. Nonlocal vibration of axially moving graphene sheet resting on orthotropic visco-Pasternak foundation under longitudinal magnetic field. Physica B: Condensed Matter 495:35–49. doi:10.1016/j.physb.2016.04.039.
  • Ghorbanpour Arani, A.,. H. BabaAkbar-Zarei, and E. Haghparast. 2016b. Application of Halpin-Tsai method in modelling and size-dependent vibration analysis of CNTs/fiber/polymer composite microplates. Journal of Computational Applied Mechanics 47:45–52. doi:10.22059/jcamech.2016.59254.
  • Han, Y., and J. Elliott. 2007. Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Computational Materials Science 39 (2):315–23. doi:10.1016/j.commatsci.2006.06.011.
  • Hu, S., and S. Shen. 2010. Variational principles and governing equations in nano-dielectrics with the flexoelectric effect. Science China Physics, Mechanics and Astronomy 53 (8):1497–504. doi:10.1007/s11433-010-4039-5.
  • Lao, C. S., Q. Kuang, Z. L. Wang., et al. 2007. Polymer functionalized piezoelectric-FET as humidity/chemical nanosensors. Applied Physics Letters 90:2–4. doi:10.1063/1.2748097.
  • Li, H., S. Hu, and H. Tzou. 2015. Modal signal analysis of conical shells with flexoelectric sensors. Journal of Intelligent Material Systems and Structures 26 (12):1551–63. doi:10.1177/1045389X14544150.
  • Liang, X., W. Yang, S. Hu, and S. Shen. 2016. Buckling and vibration of flexoelectric nanofilms subjected to mechanical loads. Journal of Physics D: Applied Physics 49 (11):115307. doi:10.1088/0022-3727/49/11/115307.
  • Liu, C., S. Hu, and S. Shen. 2012. Effect of flexoelectricity on electrostatic potential in a bent piezoelectric nanowire. Smart Materials and Structures 21 (11):115024. doi:10.1088/0964-1726/21/11/115024.
  • Ma, W., and L. E. Cross. 2001. Observation of the flexoelectric effect in relaxor Pb(Mg1/3Nb2/3)O3 ceramics. Applied Physics Letters 78 (19):2920–1. doi:10.1063/1.1356444.
  • Ma, W., and L. E. Cross. 2003. Strain-gradient-induced electric polarization in lead zirconate titanate ceramics. Applied Physics Letters 82 (19):3293–5. doi:10.1063/1.1570517.
  • Ma, W., and L. E. Cross. 2002. Flexoelectric polarization of barium strontium titanate in the paraelectric state. Applied Physics Letters 81 (18):3440–2. doi:10.1063/1.1518559.
  • Ma, W., and L. E. Cross. 2006. Flexoelectricity of barium titanate. Applied Physics Letters 88:2004–7. doi:10.1063/1.2211309.
  • Majdoub, M. S., P. Sharma, and T. Cagin. 2008. Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect M. Physical Review B 77:125424. doi:10.1103/PhysRevB.79.119904.
  • Maranganti, R., N. D. Sharma, and P. Sharma. 2006. Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green’s function solutions and embedded inclusions. Physical Review B 74:1–14. doi:10.1103/PhysRevB.74.014110.
  • Mindlin, R. D. 1968. Polarization gradient in elastic dielectrics. International Journal of Solids and Structures 4 (6):637–42. doi:10.1016/0020-7683(68)90079-6.
  • Nguyen, T. D., S. Mao, Y.-W. Yeh, P. K. Purohit, and M. C. McAlpine. 2013. Nanoscale Flexoelectricity. Advanced Materials 25 (7):946–74. doi:10.1002/adma.201203852.
  • Robinson, C. R., K. W. White, and P. Sharma. 2012. Elucidating the mechanism for indentation size-effect in dielectrics. Applied Physics Letters 101 (12):122901. doi:10.1063/1.4753799.
  • Shahrjerdi, A., M. Bayat, F. Mustapha, S. M. Sapuan, and R. Zahari. 2010. Second-order shear deformation theory to analyze stress distribution for solar functionally graded plates. Mechanics Based Design of Structures and Machines 38 (3):348–61. doi:10.1080/15397731003744603.
  • Sharma, N. D., C. M. Landis, and P. Sharma. 2010. Piezoelectric thin-film super-lattices without using piezoelectric materials. Journal of Applied Physics 108:24304. doi:10.1063/1.3443404.
  • Sharma, N. D. D., R. Maranganti, and P. Sharma. 2007. On the possibility of piezoelectric nanocomposites without using piezoelectric materials. Journal of the Mechanics and Physics of Solids 55 (11):2328–50. doi:10.1016/j.jmps.2007.03.016.
  • Sharma, S., R. Vig, and N. Kumar. 2016. Finite element modeling of smart piezo structure: considering dependence of piezoelectric coefficients on electric field. Mechanics Based Design of Structures and Machines 44 (4):372–83. doi:10.1080/15397734.2015.1076728.
  • Shen, S., and S. Hu. 2010. A theory of flexoelectricity with surface effect for elastic dielectrics. Journal of the Mechanics and Physics of Solids 58 (5):665–77. doi:10.1016/j.jmps.2010.03.001.
  • Shu, L., X. Wei, T. Pang, X. Yao, and C. Wang. 2011. Symmetry of flexoelectric coefficients in crystalline medium. Journal of Applied Physics 110 (10):104106. doi:10.1063/1.3662196.
  • Tagantsev, A. K., and G. Gerra. 2006. Interface-induced phenomena in polarization response of ferroelectric thin films. Journal of Applied Physics 100:51607. doi:10.1063/1.2337009.
  • Tanner, S. M., J. M. Gray, C. T. Rogers, K. A. Bertness, and N. A. Sanford. 2007. High-Q GaN nanowire resonators and oscillators. Applied Physics Letters 91 (20):203117. doi:10.1063/1.2815747.
  • Wang, K. F., and B. L. Wang. 2016. An analytical model for nanoscale unimorph piezoelectric energy harvesters with flexoelectric effect. Composites Structures 153:253–61. doi:10.1016/j.compstruct.2016.05.104.
  • Wang, Z. L. 2006. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312 (5771):242–6. doi:10.1126/science.1124005.
  • Wang, Z. X., and H. S. Shen. 2012. Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets. Composites Part B: Engineering 43 (2):411–21. doi:10.1016/j.compositesb.2011.04.040.
  • Wattanasakulpong, N., and A. Chaikittiratana. 2015. Exact solutions for static and dynamic analyses of carbon nanotube-reinforced composite plates with Pasternak elastic foundation. Applied Mathematical Modelling 39 (18):5459–72. doi:10.1016/j.apm.2014.12.058.
  • Yan, T. H., X. D. Chen, W. F. Dou, and R. M. Lin. 2008. Feedback control of disk vibration and flutter by distributed self-sensing piezoceramic actuators. Mechanics Based Design of Structures and Machines 36 (3):283–305. doi:10.1080/15397730802400433.
  • Yang, W., X. Liang, and S. Shen. 2015. Electromechanical responses of piezoelectric nanoplates with flexoelectricity. Acta Mechanica 226 (9):3097–110. doi:10.1007/s00707-015-1373-8.
  • Yudin, P. V., and A. K. Tagantsev. 2013. Fundamentals of flexoelectricity in solids. Nanotechnology 24 (43):432001. doi:10.1088/0957-4484/24/43/432001.
  • Yue, Y. M. M., K. Y. Y. Xu, and T. Chen. 2016. A micro scale Timoshenko beam model for piezoelectricity with flexoelectricity and surface effects. Composites Structures 136:278–86. doi:10.1016/j.compstruct.2015.09.046.
  • Zhang, S., M. Xu, K. Liu, and S. Shen. 2015. A flexoelectricity effect-based sensor for direct torque measurement. Journal of Physics D: Applied Physics 48 (48):485502. doi:10.1088/0022-3727/48/48/485502.
  • Zhang, Z., and L. Jiang. 2014. Size effects on electromechanical coupling fields of a bending piezoelectric nanoplate due to surface effects and flexoelectricity. Journal of Applied Physics 116 (13):134308. doi:10.1063/1.4897367.
  • Zhang, Z., Z. Yan, and L. Jiang. 2014. Flexoelectric effect on the electroelastic responses and vibrational behaviors of a piezoelectric nanoplate. Journal of Applied Physics 116:0–9. doi:10.1063/1.4886315.
  • Zhao, M., C. Qian, S. W. R. Lee, P. Tong, H. Suemasu, and T.-Y. Zhang. 2007. Electro-elastic analysis of piezoelectric laminated plates. Advanced Composite Materials 16 (1):63–81. doi:10.1163/156855107779755273.
  • Zhu, P., Z. X. Lei, and K. M. Liew. 2012. Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Composites Structures 94 (4):1450–60. doi:10.1016/j.compstruct.2011.11.010.
  • Zubko, P., G. Catalan, and A. K. Tagantsev. 2013. Flexoelectric effect in solids. Annual Review of Materials Research 43 (1):387–421. doi:10.1146/annurev-matsci-071312-121634.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.