334
Views
59
CrossRef citations to date
0
Altmetric
Articles

Nonlocal strain gradient beam model for nonlinear secondary resonance analysis of functionally graded porous micro/nano-beams under periodic hard excitations

, &
Pages 403-432 | Received 11 Mar 2019, Accepted 23 May 2019, Published online: 17 Jun 2019

References

  • Akbarzadeh Khorshidi, M., M. Shariati, and S. A. Emam. 2016. Postbuckling of functionally graded nanobeams based on modified couple stress theory under general beam theory. International Journal of Mechanical Sciences 110:160–9. doi:10.1016/j.ijmecsci.2016.03.006.
  • Ansari, M. I., and A. Kumar. 2019. Bending analysis of functionally graded CNT reinforced doubly curved singly ruled truncated rhombic cone. Mechanics Based Design of Structures and Machines: An International Journal 47 (1):67–86. doi:10.1080/15397734.2018.1519635.
  • Arefi, M., and A. H. Soltan Arani. 2018. Higher order shear deformation bending results of a magnetoelectrothermoelastic functionally graded nanobeam in thermal, mechanical, electrical, and magnetic environments. Mechanics Based Design of Structures and Machines: An International Journal 46 (6):669–92. doi:10.1080/15397734.2018.1434002.
  • Attia, M. A., and A. A. Abdel Rahman. 2018. On vibrations of functionally graded viscoelastic nanobeams with surface effects. International Journal of Engineering Science 127:1–32. doi:10.1016/j.ijengsci.2018.02.005.
  • Chen, D., S. Kitipornchai, and J. Yang. 2018. Dynamic response and energy absorption of functionally graded porous structures. Materials and Design 140:473–87. doi:10.1016/j.matdes.2017.12.019.
  • Dastjerdi, S., and Y. Tadi Beni. 2018. A novel approach for nonlinear bending response of macro- and nanoplates with irregular variable thickness under nonuniform loading in thermal environment. Mechanics Based Design of Structures and Machines: An International Journal. doi:10.1080/15397734.2018.1557529.
  • Fakher, M., S. Rahmanian, and S. Hosseini-Hashemi. 2019. On the carbon nanotube mass nanosensor by integral form of nonlocal elasticity. International Journal of Mechanical Sciences 150:445–57. doi:10.1016/j.ijmecsci.2018.10.051.
  • Fang, X.-Q., C.-S. Zhu, J.-X. Liu, and X.-L. Liu. 2018. Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures. Physica B 529:41–56. doi:10.1016/j.physb.2017.10.038.
  • Farajpour, A., M. R. Hairi Yazdi, A. Rastgoo, M. Loghmani, and M. Mohammadi. 2016. Nonlocal nonlinear plate model for large amplitude vibration of magneto-electro-elastic nanoplates. Composite Structures 140:323–226. doi:10.1016/j.compstruct.2015.12.039.
  • Fattahi, A. M., and S. Sahmani. 2017a. Size dependency in the axial postbuckling behavior of nanopanels made of functionally graded material considering surface elasticity. Arabian Journal for Science and Engineering 42 (11):4617–33. doi:10.1007/s13369-017-2600-5.
  • Fattahi, A. M., and S. Sahmani. 2017b. Nonlocal temperature-dependent postbuckling behavior of FG-CNT reinforced nanoshells under hydrostatic pressure combined with heat conduction. Microsystem Technologies 23 (10):5121–37. doi:10.1007/s00542-017-3377-x.
  • Fu, Y., and J. Zhang. 2013. Free vibration analysis of a microbeam subjected to a symmetric electrostatic field. Mechanics Based Design of Structures and Machines: An International Journal 20:257–63. doi:10.1080/15376494.2011.584264.
  • Ghorbanpour Arani, A., M. Pourjamshidian, and M. Arefi. 2018. Non-linear free and forced vibration analysis of sandwich nano-beam with FG-CNTRC face-sheets based on nonlocal strain gradient theory. Smart Structures and Systems 22:105–20.
  • Hamdia, K. M., M. Silani, X. Zhuang, P. He, and T. Rabczuk. 2017. Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions. International Journal of Fracture 206 (2):215–27. doi:10.1007/s10704-017-0210-6.
  • Hamdia, K. M., H. Ghasemi, X. Zhuang, N. Alajlan, and T. Rabczuk. 2018. Sensitivity and uncertainty analysis for flexoelectric nanostructures. Computer Methods in Applied Mechanics and Engineering 337:95–109. doi:10.1016/j.cma.2018.03.016.
  • Hashemi, M., and M. Asghari. 2017. On the size-dependent flexural vibration characteristics of unbalanced couple stress-based micro-spinning beams. Mechanics Based Design of Structures and Machines: An International Journal 45 (1):1–11. doi:10.1080/15397734.2015.1125298.
  • Jain, R. K., S. Datta, and S. Majumder. 2014. Biomimetic behavior of IPMC using EMG signal for microrobot. Mechanics Based Design of Structures and Machines: An International Journal 42 (3):398–417. doi:10.1080/15397734.2014.908729.
  • Jung, W.-Y., S.-C. Han, and W.-T. Park. 2014. A modified couple stress theory for buckling analysis of S-FGM nanoplates embedded in Pasternak elastic medium. Composites Part B: Engineering 60:746–56. doi:10.1016/j.compositesb.2013.12.058.
  • Jung, W.-Y., and S.-C. Han. 2015. Static and eigenvalue problems of Sigmoid functionally graded materials (S-FGM) micro-scale plates using the modified couple stress theory. Applied Mathematical Modelling 39 (12):3506–24. doi:10.1016/j.apm.2014.11.056.
  • Kamenar, E., and S. Zelenika. 2017. Nanometric positioning accuracy in the presence of presliding and sliding friction: Modelling, identification and compensation. Mechanics Based Design of Structures and Machines: An International Journal 45 (1):111–26. doi:10.1080/15397734.2016.1149487.
  • Karami, B., M. Janghorban, and L. Li. 2018. On guided wave propagation in fully clamped porous functionally graded nanoplates. Acta Astronautica 143:380–90. doi:10.1016/j.actaastro.2017.12.011.
  • Kiani, K. 2016. Free dynamic analysis of functionally graded tapered nanorods via a newly developed nonlocal surface energy-based integro-differential model. Composite Structures 139:151–66. doi:10.1016/j.compstruct.2015.11.059.
  • Lei, J., Y. He, B. Zhang, Z. Gan, and P. Zeng. 2013. Bending and vibration of functionally graded sinusoidal microbeams based on the strain gradient elasticity theory. International Journal of Engineering Science 72:36–52. doi:10.1016/j.ijengsci.2013.06.012.
  • Li, C. 2017. Nonlocal thermo-electro-mechanical coupling vibrations of axially moving piezoelectric nanobeams. Mechanics Based Design of Structures and Machines: An International Journal 45 (4):463–78. doi:10.1080/15397734.2016.1242079.
  • Li, L., and Y. Hu. 2015. Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory. International Journal of Engineering Science 97:84–94. doi:10.1016/j.ijengsci.2015.08.013.
  • Li, L., and Y. Hu. 2016. Wave propagation in fluid-conveying viscoelastic carbon nanotubes based on nonlocal strain gradient theory. Computational Materials Science 112:282–8. doi:10.1016/j.commatsci.2015.10.044.
  • Li, K., D. Wu, X. Chen, J. Cheng, Z. Liu, W. Gao, and M. Liu. 2018. Isogeometric analysis of functionally graded porous plates reinforced by graphene platelets. Composite Structures 204:114–30. doi:10.1016/j.compstruct.2018.07.059.
  • Li, L., H. Tang, and Y. Hu. 2018a. The effect of thickness on the mechanics of nanobeams. International Journal of Engineering Science 123:81–91. doi:10.1016/j.ijengsci.2017.11.021.
  • Li, L., H. Tang, and Y. Hu. 2018b. Size-dependent nonlinear vibration of beam-type porous materials with an initial geometrical curvature. Composite Structures 184:1177–88. doi:10.1016/j.compstruct.2017.10.052.
  • Li, C., S. K. Lai, and X. Yang. 2019. On the nano-structural dependence of nonlocal dynamics and its relationship to the upper limit of nonlocal scale parameter. Applied Mathematical Modelling 69:127–41. doi:10.1016/j.apm.2018.12.010.
  • Lim, C. W., G. Zhang, and J. N. Reddy. 2015. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. Journal of Mechanics and Physics of Solids 78:298–313. doi:10.1016/j.jmps.2015.02.001.
  • Madani, S. H., M. H. Sabour, and M. Fadaee. 2018. Molecular dynamics simulation of vibrational behavior of annular graphene sheet: Identification of nonlocal parameter. Journal of Molecular Graphics and Modelling 79:264–72. doi:10.1016/j.jmgm.2017.11.008.
  • Mahmoudpour, E., S. H. Hosseini-Hashemi, and S. A. Faghidian. 2018. Nonlinear vibration analysis of FG nano-beams resting on elastic foundation in thermal environment using stress-driven nonlocal integral model. Applied Mathematical Modelling 57:302–15. doi:10.1016/j.apm.2018.01.021.
  • Mehralian, F., Y. Tadi Beni, and M. Karimi Zeverdejani. 2017. Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes. Physica B 514:61–9. doi:10.1016/j.physb.2017.03.030.
  • Mohammadi, K., A. Rajabpour, and M. Ghadiri. 2018. Calibration of nonlocal strain gradient shell model for vibration analysis of a CNT conveying viscous fluid using molecular dynamics simulation. Computational Materials Science 148:104–15. doi:10.1016/j.commatsci.2018.02.036.
  • Pang, M., Z. L. Li, and Y. Q. Zhang. 2018. Size-dependent transverse vibration of viscoelastic nanoplates including high-order surface stress effect. Physica B 545:94–8. doi:10.1016/j.physb.2018.06.002.
  • Pinto, Y., and D. Mordehai. 2018. Size-dependent coupled longitudinal–transverse vibration of five-fold twinned nanowires. Extreme Mechanics Letters 23:49–54. doi:10.1016/j.eml.2018.07.006.
  • Radwan, A. F., and M. Sobhy. 2018. Nonlocal strain gradient model for dynamic deformation of orthotropic viscoelastic graphene sheets under time harmonic thermal load. Physica B 538:74–84. doi:10.1016/j.physb.2018.03.008.
  • Reddy, J. N., S. El-Borgi, and J. Romanoff. 2014. Non-linear analysis of functionally graded microbeams using Eringen׳s non-local differential model. International Journal of Non-Linear Mechanics 67:308–18. doi:10.1016/j.ijnonlinmec.2014.09.014.
  • Roberts, A. P., and E. J. Garboczi. 2001. Elastic moduli of model random three-dimensional closed-cell cellular solids. Acta Materialia 49 (2):189–97. doi:10.1016/S1359-6454(00)00314-1.
  • Sahmani, S., M. Bahrami, and R. Ansari. 2014. Nonlinear free vibration analysis of functionally graded third-order shear deformable microbeams based on the modified strain gradient elasticity theory. Composite Structures 110:219–30. doi:10.1016/j.compstruct.2013.12.004.
  • Sahmani, S., M. M. Aghdam, and M. Bahrami. 2015. On the free vibration characteristics of postbuckled third-order shear deformable FGM nanobeams including surface effects. Composite Structures 121:377–85. doi:10.1016/j.compstruct.2014.11.033.
  • Sahmani, S., and M. M. Aghdam. 2017a. Size dependency in axial postbuckling behavior of hybrid FGM exponential shear deformable nanoshells based on the nonlocal elasticity theory. Composite Structures 166:104–13. doi:10.1016/j.compstruct.2017.01.051.
  • Sahmani, S., and M. M. Aghdam. 2017b. Nonlinear instability of hydrostatic pressurized hybrid FGM exponential shear deformable nanoshells based on nonlocal continuum elasticity. Composites Part B: Engineering 114:404–17. doi:10.1016/j.compositesb.2017.01.038.
  • Sahmani, S., and M. M. Aghdam. 2017c. Size-dependent nonlinear bending of micro/nano-beams made of nanoporous biomaterials including a refined truncated cube cell. Physics Letters A 381 (45):3818–30. doi:10.1016/j.physleta.2017.10.013.
  • Sahmani, S., and M. M. Aghdam. 2017d. Size-dependent axial instability of microtubules surrounded by cytoplasm of a living cell based on nonlocal strain gradient elasticity theory. Journal of Theoretical Biology 422:59–71. doi:10.1016/j.jtbi.2017.04.012.
  • Sahmani, S., and M. M. Aghdam. 2017e. Nonlinear vibrations of pre-and post-buckled lipid supramolecular micro/nano-tubules via nonlocal strain gradient elasticity theory. Journal of Biomechanics 65:49–60. doi:10.1016/j.jbiomech.2017.09.033.
  • Sahmani, S., and M. M. Aghdam. 2017f. A nonlocal strain gradient hyperbolic shear deformable shell model for radial postbuckling analysis of functionally graded multilayer GPLRC nanoshells. Composite Structures 178:97–109. doi:10.1016/j.compstruct.2017.06.062.
  • Sahmani, S., and M. M. Aghdam. 2017g. Nonlinear instability of axially loaded functionally graded multilayer graphene platelet-reinforced nanoshells based on nonlocal strain gradient elasticity theory. International Journal of Mechanical Sciences 131:95–106. doi:10.1016/j.ijmecsci.2017.06.052.
  • Sahmani, S., and M. M. Aghdam. 2017h. Nonlocal strain gradient beam model for nonlinear vibration of prebuckled and postbuckled multilayer functionally graded GPLRC nanobeams. Composite Structures 179:77–88. doi:10.1016/j.compstruct.2017.07.064.
  • Sahmani, S., and M. M. Aghdam. 2018a. Boundary layer modeling of nonlinear axial buckling behavior of functionally graded cylindrical nanoshells based on the surface elasticity theory. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering 42 (3):229–45. doi:10.1007/s40997-017-0092-2.
  • Sahmani, S., and M. M. Aghdam. 2018b. Nonlinear size-dependent instability of hybrid FGM nanoshells. Nonlinear approaches in engineering applications, 107–143. Berlin: Springer.
  • Sahmani, S., and M. M. Aghdam. 2018c. Nonlocal electrothermomechanical instability of temperature-dependent FGM nanopanels with piezoelectric facesheets. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering. doi:10.1007/s40997-018-0180-y.
  • Sahmani, S., and M. M. Aghdam. 2018d. Nonlinear instability of hydrostatic pressurized microtubules surrounded by cytoplasm of a living cell including nonlocality and strain gradient microsize dependency. Acta Mechanica 229 (1):403–20. doi:10.1007/s00707-017-1978-1.
  • Sahmani, S., and M. M. Aghdam. 2018e. Nonlocal strain gradient beam model for postbuckling and associated vibrational response of lipid supramolecular protein micro/nano-tubules. Mathematical Biosciences 295:24–35. doi:10.1016/j.mbs.2017.11.002.
  • Sahmani, S., and M. M. Aghdam. 2019. Size-dependent nonlinear mechanics of biological nanoporous microbeams. Nanomaterials for advanced biological applications, 181–207. Berlin: Springer,
  • Sahmani, S., and A. M. Fattahi. 2017a. Nonlocal size dependency in nonlinear instability of axially loaded exponential shear deformable FG-CNT reinforced nanoshells under heat conduction. The European Physical Journal Plus 132:231.
  • Sahmani, S., and A. M. Fattahi. 2017b. Imperfection sensitivity of the size-dependent nonlinear instability of axially loaded FGM nanopanels in thermal environments. Acta Mechanica 228 (11):3789–810. doi:10.1007/s00707-017-1912-6.
  • Sahmani, S., and A. Khandan. 2018. Size dependency in nonlinear instability of smart magneto-electro-elastic cylindrical composite nanopanels based upon nonlocal strain gradient elasticity. Microsystem Technologies. doi:10.1007/s00542-018-4072-2.
  • Sahmani, S., and B. Safaei. 2019. Nonlinear free vibrations of bi-directional functionally graded micro/nano-beams including nonlocal stress and microstructural strain gradient size effects. Thin-Walled Structures 140:342–56. doi:10.1016/j.tws.2019.03.045.
  • Sahmani, S., M. M. Aghdam, and M. Bahrami. 2017. An efficient size-dependent shear deformable shell model and molecular dynamics simulation for axial instability analysis of silicon nanoshells. Journal of Molecular Graphics and Modelling 77:263–79. doi:10.1016/j.jmgm.2017.08.015.
  • Sahmani, S., M. M. Aghdam, and A. Akbarzadeh. 2018a. Surface stress effect on nonlinear instability of imperfect piezoelectric nanoshells under combination of hydrostatic pressure and lateral electric field. AUT Journal of Mechanical Engineering 2:177–90.
  • Sahmani, S., M. M. Aghdam, and T. Rabczuk. 2018b. Nonlocal strain gradient plate model for nonlinear large-amplitude vibrations of functionally graded porous micro/nano-plates reinforced with GPLs. Composite Structures 198:51–62. doi:10.1016/j.compstruct.2018.05.031.
  • Sahmani, S., M. M. Aghdam, and T. Rabczuk. 2018c. A unified nonlocal strain gradient plate model for nonlinear axial instability of functionally graded porous micro/nano-plates reinforced with graphene platelets. Materials Research Express 5 (4):045048. doi:10.1088/2053-1591/aabdbb.
  • Sahmani, S., M. M. Aghdam, and T. Rabczuk. 2018d. Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory. Composite Structures 186:68–78. doi:10.1016/j.compstruct.2017.11.082.
  • Sahmani, S., A. M. Fattahi, and N. A. Ahmed. 2018e. Analytical mathematical solution for vibrational response of postbuckled laminated FG-GPLRC nonlocal strain gradient micro-/nanobeams. Engineering with Computers. doi:10.1007/s00366-018-0657-8.
  • Sahmani, S., A. M. Fattahi, and N. A. Ahmed. 2018f. Nonlinear torsional buckling and postbuckling analysis of cylindrical silicon nanoshells incorporating surface free energy effects. Microsystem Technologies. doi:10.1007/s00542-018-4246-y.
  • Sahmani, S., A. M. Fattahi, and N. A. Ahmed. 2019. Develop a refined truncated cubic lattice structure for nonlinear large-amplitude vibrations of micro/nano-beams made of nanoporous materials. Engineering with Computers. doi:10.1007/s00366-019-00703-6.
  • Sahmani, S., M. Fotouhi, and M. M. Aghdam. 2019. Size-dependent nonlinear secondary resonance of micro-/nano-beams made of nano-porous biomaterials including truncated cube cells. Acta Mechanica 230 (3):1077–103. doi:10.1007/s00707-018-2334-9.
  • Sarafraz, A., S. Sahmani, and M. M. Aghdam. 2019. Nonlinear secondary resonance of nanobeams under subharmonic and superharmonic excitations including surface free energy effects. Applied Mathematical Modelling 66:195–226. doi:10.1016/j.apm.2018.09.013.
  • Shojaeian, M., and Y. Tadi Beni. 2015. Size-dependent electromechanical buckling of functionally graded electrostatic nano-bridges. Sensors and Actuators A: Physical 232:49–62. doi:10.1016/j.sna.2015.04.025.
  • Simsek, M. 2016. Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach. International Journal of Engineering Science 105:10–21.
  • Şimşek, M., and J. N. Reddy. 2013. A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory. Composite Structures 101:47–58. doi:10.1016/j.compstruct.2013.01.017.
  • Sohi, A. N., and P. M. Nieva. 2018. Size-dependent effects of surface stress on resonance behavior of microcantilever-based sensors. Sensors and Actuators A: Physical 269:505–14. doi:10.1016/j.sna.2017.12.001.
  • Soleimani, I., and Y. Tadi Beni. 2018. Vibration analysis of nanotubes based on two-node size dependent axisymmetric shell element. Archives of Civil and Mechanical Engineering 18 (4):1345–58. doi:10.1016/j.acme.2018.04.009.
  • Sui, S. H., L. Chen, and L. Q. Yao. 2017. Nonlocal elasticity approach for free longitudinal vibration of circular truncated nanocones and method of determining the range of nonlocal small scale. Smart Structures and Systems 21:279–86.
  • Tang, Y., Y. Liu, and D. Zhao. 2017. Wave dispersion in viscoelastic single walled carbon nanotubes based on the nonlocal strain gradient Timoshenko beam model. Physica E 87:301–7. doi:10.1016/j.physe.2016.10.046.
  • Tang, H., L. Li, and Y. Hu. 2019a. Coupling effect of thickness and shear deformation on size-dependent bending of micro/nano-scale porous beams. Applied Mathematical Modelling 66:527–47. doi:10.1016/j.apm.2018.09.027.
  • Tang, H., L. Li, Y. Hu, W. Meng, and K. Duan. 2019b. Vibration of nonlocal strain gradient beams incorporating Poisson's ratio and thickness effects. Thin-Walled Structures 137:377–91. doi:10.1016/j.tws.2019.01.027.
  • Tao, C., and Y. Fu. 2017. Thermal buckling and postbuckling analysis of size-dependent composite laminated microbeams based on a new modified couple stress theory. Acta Mechanica 228 (5):1711–24. doi:10.1007/s00707-016-1770-7.
  • Thai, C. H., A. J. M. Ferreira, T. Rabczuk, and H. Nguyen-Xuan. 2018. Size-dependent analysis of FG-CNTRC microplates based on modified strain gradient elasticity theory. European Journal of Mechanics: A/Solids 72:521–38. doi:10.1016/j.euromechsol.2018.07.012.
  • Tohidi, H., S. Hosseini-Hashemi, and A. Maghsoudpour. 2018. Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory. Smart Structures and Systems 22:527–46.
  • Vu-Bac, N., T. Lahmer, T. Zhuang, T. Nguyen-Thoi, and T. Rabczuk. 2016. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software 100:19–31. doi:10.1016/j.advengsoft.2016.06.005.
  • Wang, Y., K. Xie, and T. Fu. 2018a. Vibration analysis of functionally graded porous shear deformable tubes excited by moving distributed loads. Acta Astronautica 151:603–13. doi:10.1016/j.actaastro.2018.06.003.
  • Wang, J., H. Shen, B. Zhang, J. Liu, and Y. Zhang. 2018b. Complex modal analysis of transverse free vibrations for axially moving nanobeams based on the nonlocal strain gradient theory. Physica E 101:85–93. doi:10.1016/j.physe.2018.03.017.
  • Wu, D., A. Liu, Y. Huang, Y. Huang, Y. Pi, and W. Gao. 2018a. Dynamic analysis of functionally graded porous structures through finite element analysis. Engineering Structures 165:287–301. doi:10.1016/j.engstruct.2018.03.023.
  • Wu, D., A. Liu, Y. Huang, Y. Huang, Y. Pi, and W. Gao. 2018b. Mathematical programming approach for uncertain linear elastic analysis of functionally graded porous structures with interval parameters. Composites Part B: Engineering 152:282–91. doi:10.1016/j.compositesb.2018.06.032.
  • Xu, L., and Q. Yang. 2015. Multi-field coupled dynamics for a micro beam. Mechanics Based Design of Structures and Machines: An International Journal 43 (1):57–73. doi:10.1080/15397734.2014.928221.
  • Xu, L., and Z. Fu. 2019. Effects of van der Waals force on nonlinear vibration of electromechanical integrated electrostatic harmonic actuator. Mechanics Based Design of Structures and Machines: An International Journal 47 (2):136–53. doi:10.1080/15397734.2018.1490651.
  • Yang, W. D., F. P. Yang, and X. Wang. 2016. Coupling influences of nonlocal stress and strain gradients on dynamic pull-in of functionally graded nanotubes reinforced nano-actuator with damping effects. Sensors and Actuators A: Physical 248:10–21. doi:10.1016/j.sna.2016.07.017.
  • Zhang, B., Y. He, D. Liu, L. Shen, and J. Lei. 2015. Free vibration analysis of four-unknown shear deformable functionally graded cylindrical microshells based on the strain gradient elasticity theory. Composite Structures 119:578–97. doi:10.1016/j.compstruct.2014.09.032.
  • Zhang, Y., and J. Wang. 2017. Fabrication of functionally graded porous polymer structures using thermal bonding lamination techniques. Procedia Manufacturing 10:866–75. doi:10.1016/j.promfg.2017.07.073.
  • Zhu, X., and L. Li. 2017a. Twisting statics of functionally graded nanotubes using Eringen’s nonlocal integral model. Composite Structures 178:87–96. doi:10.1016/j.compstruct.2017.06.067.
  • Zhu, X., and L. Li. 2017b. Longitudinal and torsional vibrations of size-dependent rods via nonlocal integral elasticity. International Journal of Mechanical Sciences 133:639–50. doi:10.1016/j.ijmecsci.2017.09.030.
  • Ziaee, S. 2017. The steady-state response of size-dependent functionally graded nanobeams to subharmonic excitation. Journal of Engineering Mathematics 104 (1):19–39. doi:10.1007/s10665-016-9870-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.