271
Views
9
CrossRef citations to date
0
Altmetric
Articles

Modal analysis of cracked continuous Timoshenko beam made of functionally graded material

ORCID Icon, &
Pages 459-479 | Received 17 Mar 2019, Accepted 01 Jul 2019, Published online: 16 Jul 2019

References

  • Akbas, S. D. 2013. Free vibration characteristics of edge cracked functionally graded beams by using finite element method. International Journal of Engineering Trends and Technology 4 (10):4590–7.
  • Aydin, K. 2013. Free vibration of functional graded beams with arbitrary number of cracks. European Journal of Mechanics—A/Solids 42:112–24. doi:10.1016/j.euromechsol.2013.05.002.
  • Banerjee, A., B. Panigrahi, and G. Pohit. 2016. Crack modelling and detection in Timoshenko FGM beam under transverse vibration using frequency contour and response surface model with GA. Nondestructive Testing and Evaluation 31 (2):142–64. doi:10.1080/10589759.2015.1071812.
  • Birman, V., and L. W. Byrd. 2007. Modeling and analysis of functional graded materials and structures. Applied Mechanics Reviews 60 (5):195–215. doi:10.1115/1.2777164.
  • Chakraborty, A., and S. Gopalakrishnan. 2003. A spectrally formulated finite element for wave propagation analysis in functionally graded beams. International Journal of Solids and Structures 40 (10):2421–48. doi:10.1016/S0020-7683(03)00029-5.
  • Chakraborty, A., S. J. Gopalakrishnan, and N. Reddy. 2003. A new beam finite element for the analysis of functional graded materials. International Journal of Mechanical Sciences 45 (3):519–39. doi:10.1016/S0020-7403(03)00058-4.
  • Chondros, T. G., A. D. Dimarogonas, and J. Yao. 1988. Longitudinal vibration of a continuous cracked bar. Engineering Fracture Mechanics 61 (5–6):593–606. doi:10.1016/S0013-7944(98)00071-X.
  • Chondros, T. G., A. D. Dimarogonas, and J. Yao. 1998. A continuous cracked beam theory. Journal of Sound Vibrations 215 (1):17–34. doi:10.1006/jsvi.1998.1640.
  • Ding, J., L. Chu, L. Xin, and G. Dui. 2018. Nonlinear vibration analysis of functionally graded beams considering the influences of the rotary inertia of the cross section and neutral surface position. Mechanics Based Design of Structures and Machines 46 (2):225–37. doi:10.1080/15397734.2017.1329020.
  • Eltaher, M., A. Alshorbagy, and F. Mahmoud. 2013. Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams. Composite Structures 99:193–201. doi:10.1016/j.compstruct.2012.11.039.
  • Erdogan, F., and B. H. Wu. 1997. The surface crack problem for a plate with functionally graded properties. Journal of Applied Mechanics 64:448–56.
  • Golewski, G. L. 2017a. Determination of fracture toughness in concretes containing siliceous fly ash during mode III loading. Structural Engineering and Mechanics 62 (1):1–9. doi:10.12989/sem.2017.62.1.001.
  • Golewski, G. L. 2017b. Effect of fly ash addition on the fracture toughness of plain concretes of third mode of fracture. Journal of Civil Engineering and Management 23 (5):613–20. doi:10.3846/13923730.2016.1217923.
  • Gu, P., and R. J. Asaro. 1997. Cracks in functionally graded materials. International Journal of Solids and Structures 34 (1):1–17. doi:10.1016/0020-7683(95)00289-8.
  • Gupta, A., and M. Talha. 2015. Recent development in modelling and analysis of functionally graded material and structures. Progress in Aerospace Sciences 79:1–14. doi:10.1016/j.paerosci.2015.07.001.
  • Jin, Z. H., and R. C. Batra. 1996. Some basic fracture mechanics concepts in functionally graded materials. Journal of the Mechanics and Physics of Solids 44 (8):1221–35. doi:10.1016/0022-5096(96)00041-5.
  • Ke, L. L., J. Yang, S. Kitipornchai, and Y. Xiang. 2009. Flexural vibration and elastic buckling of a cracked Timoshenko beam made of functionally graded materials. Mechanics of Advanced Materials and Structures 16 (6):488–502. doi:10.1080/15376490902781175.
  • Khiem, N. T., and N. N. Huyen. 2016. Uncoupled vibrations in functionally graded Timoshenko beam. Vietnam Journal of Science and Technology 54 (6):785–96. doi:10.15625/0866-708X/54/6/7719.
  • Khiem, N. T., and N. N. Huyen. 2017. A method for crack identification in functionally graded Timoshenko beam. Nondestructive Testing and Evaluation 32(3):319–41. doi:10.1080/10589759.2016.1226304.
  • Khiem, N. T., N. N. Huyen, and N. T. Long. 2017. Vibration of cracked Timoshenko beam made of functionally graded material. In Shock & vibration, aircraft/aerospace, energy harvesting, acoustics & optics, volume 9, chapter 15, eds. J. M. Harvie, J. Baqersad, 133–143. New York: Springer.
  • Khiem, N. T., and T. V. Lien. 2001. A simplified method for natural frequency analysis of a multiple cracked beam. Journal of Sound Vibrations 245 (4):737–51. doi:10.1006/jsvi.2001.3585.
  • Kitipornchai, S., L. L. Ke, J. Yang, and Y. Xiang. 2009. Nonlinear vibration of edge cracked functionally graded Timoshenko beams. Journal of Sound Vibrations 324 (3–5):962–82. doi:10.1016/j.jsv.2009.02.023.
  • Larbi, L. O., A. Kaci, M. S. A. Houari, and A. Tounsi. 2013. An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams. Mechanics Based Design of Structures and Machines 41 (4):421–33. doi:10.1080/15397734.2013.763713.
  • Lee, J. W., and J. Y. Lee. 2017. Free vibration analysis of functionally graded Bernoulli–Euler beams using an exact transfer matrix expression. International Journal of Mechanical Sciences 122:1–17. doi:10.1016/j.ijmecsci.2017.01.011.
  • Li, X. F. 2008. A unified approach for analysing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams. Journal of Sound Vibrations 318(4–5):1210–29. doi:10.1016/j.jsv.2008.04.056.
  • Lien, T. V., N. T. Duc, and N. T. Khiem. 2017a. Free vibration analysis of multiple cracked functionally graded Timoshenko Beams. Latin American Journal of Solids and Structures 14 (9):1752–66. doi:10.1590/1679-78253693.
  • Lien, T. V., N. T. Đuc, and N. T. Khiem. 2017b. Mode Shape Analysis of Multiple Cracked Functionally Graded Timoshenko Beams. Latin American Journal of Solids and Structures 14 (7):1327–44. doi:10.1590/1679-78253496.
  • Matbuly, M., O. Ragb, and M. Nassar. 2009. Natural frequencies of a functionally graded cracked beam using the differential quadrature method. Applied Mathematics and Computation 215 (6):2307–16. doi:10.1016/j.amc.2009.08.026.
  • Nam, D. 2018. Effect of intermediate supports location on natural frequencies of multiple cracked continuous beam. Vietnam Journal of Mechanics 40 (2):181–98. doi:10.15625/0866-7136/10873.
  • Panigrahi, B., and G. Pohit. 2018. Study of nonlinear dynamic behavior of open-cracked functionally graded Timoshenko beam under forced excitation using harmonic balance method in conjunction with an iterative technique. Applied Mathematical Modelling 57:248–67. doi:10.1016/j.apm.2018.01.022.
  • Shahrjerdi, A., M. Bayat, F. Mustapha, S. Sapuan, and R. Zahari. 2010. Second order shear deformation theory to analyze stress distribution for solar functionally graded plates. Mechanics Based Design of Structures and Machines 38 (3):348–36. doi:10.1080/15397731003744603.
  • Sherafatnia, K., G. H. Farrahi, and S. A. Faghidian. 2014. Analytic approach to free vibration and bucking analysis of functionally graded beams with edge cracks using four engineering beam theories. International Journal of Engineering 27 (6):979–90.
  • Shvartsman, B., and J. Majak. 2018. Numerical method for stability analysis of functionally graded beams on elastic foundation. Applied Mathematical Modelling 37:248–67.
  • Simsek, M., and T. Kocatuk. 2009. Free and forced vibration of a functionally graded beam subjected a concentrated moving harmonic load. Composite Structures 90 (4):465–73.
  • Sina, S. A., H. M. Navazi, and H. Haddadpour. 2009. An analytical method for free vibration analysis of functionally graded beams. Materials & Design 30 (3):741–7. doi:10.1016/j.matdes.2008.05.015.
  • Su, H., and J. R. Banerjee. 2015. Development of dynamic stiffness method for free vibration of functionally graded Timoshenko beam. Composite Structures 147:107–16. doi:10.1016/j.compstruc.2014.10.001.
  • Wei, D., Y. H. Liu, and Z. H. Xiang. 2012. An analytical method for free vibration analysis of functionally graded beams with edge cracks. Journal of Sound and Vibration 331:1685–700.
  • Yan, T., S. Kitipornchai, J. Yang, and X. Q. He. 2011. Dynamic behavior of edge-cracked shear deformable functionally graded beams on an elastic foundation under a moving load. Composite Structures 93 (11):2992–3001. doi:10.1016/j.compstruct.2011.05.003.
  • Yang, J., and Y. Chen. 2008. Free vibration and buckling analyses of functionally graded beams with edge cracks. Composite Structures 83 (1):48–60. doi:10.1016/j.compstruct.2007.03.006.
  • Yu, Z. G., and F. L. Chu. 2009. Identification of crack in functionally graded material beams using the p-version of finite element method. Journal of Sound Vibrations 325 (1–2):69–84. doi:10.1016/j.jsv.2009.03.010.
  • Yuda, H., and Z. Xiaoguang. 2011. Parametric vibration and stability of a functionally graded plate. Mechanics Based Design of Structures and Machines 39 (3):367–77. doi:10.1080/15397734.2011.557970.
  • Zhong, Z., and T. Yu. 2007. Analytical solution of a cantilever functionally graded beam. Composites Science and Technology. 67:481–8. doi:10.1016/j.compscitech.2006.08.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.