429
Views
61
CrossRef citations to date
0
Altmetric
Articles

Torsional vibration of functionally graded nano-rod under magnetic field supported by a generalized torsional foundation based on nonlocal elasticity theory

, &
Pages 480-495 | Received 14 Jun 2019, Accepted 08 Jul 2019, Published online: 23 Jul 2019

References

  • Adeli, M. M., A. Hadi, M. Hosseini, and H. H. Gorgani. 2017. Torsional vibration of nano-cone based on nonlocal strain gradient elasticity theory. The European Physical Journal Plus 132 (9):393. doi:10.1140/epjp/i2017-11688-0.
  • Ahouel, M., M. S. A. Houari, E. A. Bedia, and A. Tounsi. 2016. Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept. Steel and Composite Structures 20 (5):963–81. doi:10.12989/scs.2016.20.5.963.
  • Alavi, S. H., and H. Eipakchi. 2019. Analytical method for free-damped vibration analysis of viscoelastic shear deformable annular plates made of functionally graded materials. Mechanics Based Design of Structures and Machines 47 (4):497–519. doi:10.1080/15397734.2019.1565499.
  • Apuzzo, A., R. Barretta, R. Luciano, F. Marotti de Sciarra, and R. Penna. 2017. Free vibrations of Bernoulli-Euler nano-beams by the stress-driven nonlocal integral model. Composites Part B: Engineering 123 (Supplement C):105–11. doi:10.1016/j.compositesb.2017.03.057.
  • Arefi, M. 2016a. Surface effect and non-local elasticity in wave propagation of functionally graded piezoelectric nano-rod excited to applied voltage. Applied Mathematics and Mechanics 37 (3):289–302. doi:10.1007/s10483-016-2039-6.
  • Arefi, M. 2016b. Analysis of wave in a functionally graded magneto-electro-elastic nano-rod using nonlocal elasticity model subjected to electric and magnetic potentials. Acta Mechanica 227 (9):2529–42. doi:10.1007/s00707-016-1584-7.
  • Arefi, M. 2018a. Analysis of a doubly curved piezoelectric nano shell: Nonlocal electro-elastic bending solution. European Journal of Mechanics - A/Solids 70:226–37. doi:10.1016/j.euromechsol.2018.02.012.
  • Arefi, M. 2018b. Nonlocal free vibration analysis of a doubly curved piezoelectric nano shell. Steel and Composite Structures 27 (4):479–93.
  • Arefi, M., M. Kiani, and T. Rabczuk. 2019. Application of nonlocal strain gradient theory to size dependent bending analysis of a sandwich porous nanoplate integrated with piezomagnetic face-sheets. Composites Part B: Engineering 168 :320–33. doi:10.1016/j.compositesb.2019.02.057.
  • Arefi, M., M. Nasr, and A. Loghman. 2018. Creep analysis of the FG cylinders: Time-dependent non-axisymmetric behavior. Steel and Composite Structures 28 (3):331–47.
  • Arefi, M., and T. Rabczuk. 2019. A nonlocal higher order shear deformation theory for electro-elastic analysis of a piezoelectric doubly curved nano shell. Composites Part B: Engineering 168:496–510. doi:10.1016/j.compositesb.2019.03.065.
  • Arefi, M., and A. H. Soltan Arani. 2018. Higher order shear deformation bending results of a magnetoelectrothermoelastic functionally graded nanobeam in thermal, mechanical, electrical, and magnetic environments. Mechanics Based Design of Structures and Machines 46 (6):669–92. doi:10.1080/15397734.2018.1434002.
  • Barretta, R., L. Feo, and R. Luciano. 2015. Torsion of functionally graded nonlocal viscoelastic circular nanobeams. Composites Part B: Engineering 72:217–22. doi:10.1016/j.compositesb.2014.12.018.
  • Belkorissat, I., M. S. A. Houari, A. Tounsi, E. A. Bedia, and S. R. Mahmoud. 2015. On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model. Steel and Composite Structures 18 (4):1063–81. doi:10.12989/scs.2015.18.4.1063.
  • Besseghier, A., M. S. A. Houari, A. Tounsi, and S. R. Mahmoud. 2017. Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory. Smart Structures and Systems 19 (6):601–14.
  • Bounouara, F., K. H. Benrahou, I. Belkorissat, and A. Tounsi. 2016. A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation. Steel and Composite Structures 20 (2):227–49. doi:10.12989/scs.2016.20.2.227.
  • Boutaleb, S., K. H. Benrahou, A. Bakora, A. Algarni, A. A. Bousahla, A. Tounsi, A. Tounsi, and S. R. Mahmoud. 2019. Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT. Advances in Nano Research 7 (3):189–206.
  • Chaht, F. L., A. Kaci, M. S. A. Houari, A. Tounsi, O. A. Bég, and S. R. Mahmoud. 2015. Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect. Steel and Composite Structures 18 (2):425–42. doi:10.12989/scs.2015.18.2.425.
  • Cho, J. R., and J. T. Oden. 2000. Functionally graded material: A parametric study on thermal-stress characteristics using the Crank–Nicolson–Galerkin scheme. Computer Methods in Applied Mechanics and Engineering 188 (1–3):17–38. doi:10.1016/S0045-7825(99)00289-3.
  • Dastjerdi, S., and Y. Tadi Beni. 2019. A novel approach for nonlinear bending response of macro-and nanoplates with irregular variable thickness under nonuniform loading in thermal environment. Mechanics Based Design of Structures and Machines 47:453–78. doi:10.1080/15397734.2018.1557529.
  • Demir, C., and Ö. Civalek. 2013. Torsional and longitudinal frequency and wave response of microtubules based on the nonlocal continuum and nonlocal discrete models. Applied Mathematical Modelling 37 (22):9355–67. doi:10.1016/j.apm.2013.04.050.
  • Ding, J., L. Chu, L. Xin, and G. Dui. 2018. Nonlinear vibration analysis of functionally graded beams considering the influences of the rotary inertia of the cross section and neutral surface position. Mechanics Based Design of Structures and Machines 46 (2):225–37. doi:10.1080/15397734.2017.1329020.
  • Ebrahimi, F., and M. R. Barati. 2017. Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory. Composite STRUCTURES 159:433–44. doi:10.1016/j.compstruct.2016.09.092.
  • Ebrahimi, F., and A. Dabbagh. 2017. Nonlocal strain gradient based wave dispersion behavior of smart rotating magneto-electro-elastic nanoplates. Materials Research Express 4 (2):025003. doi:10.1088/2053-1591/aa55b5.
  • Ebrahimi, F., and N. Shafiei. 2017. Influence of initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy's higher-order shear deformation plate theory. Mechanics of Advanced Materials and Structures 24 (9):761–72. doi:10.1080/15376494.2016.1196781.
  • Esmailpoor Hajilak, Z., J. Pourghader, D. Hashemabadi, F. Sharifi Bagh, M. Habibi, and H. Safarpour. 2019. Multilayer GPLRC composite cylindrical nanoshell using modified strain gradient theory. Mechanics Based Design of Structures and Machines:1–25. doi:10.1080/15397734.2019.1566743.
  • Farajpour, M. R., A. R. Shahidi, A. Hadi, and A. Farajpour. 2018. Influence of initial edge displacement on the nonlinear vibration, electrical and magnetic instabilities of magneto-electro-elastic nanofilms. Mechanics of Advanced Materials and Structures:1–13. doi:10.1080/15376494.2018.1432820.
  • Fattahi, A. M., S. Sahmani, and N. A. Ahmed. 2019. Nonlocal strain gradient beam model for nonlinear secondary resonance analysis of functionally graded porous micro/nano-beams under periodic hard excitations. Mechanics Based Design of Structures and Machines:1–30. doi:10.1080/15397734.2019.1624176.
  • Gharibi, M., M. Z. Nejad, and A. Hadi. 2017. Elastic analysis of functionally graded rotating thick cylindrical pressure vessels with exponentially-varying properties using power series method of Frobenius. Journal of Computational Applied Mechanics 48 (1):89–98.
  • Gorgani, H. H., M. M. Adeli, and M. Hosseini. 2018. Pull-in behavior of functionally graded micro/nano-beams for MEMS and NEMS switches. Microsystem Technologies:1–9.
  • Gupta, A., and M. Talha. 2018. Influence of initial geometric imperfections and porosity on the stability of functionally graded material plates. Mechanics Based Design of Structures and Machines 46 (6):693–711. doi:10.1080/15397734.2018.1449656.
  • Hadi, A., M. Z. Nejad, and M. Hosseini. 2018. Vibrations of three-dimensionally graded nanobeams. International Journal of Engineering Science 128:12–23. doi:10.1016/j.ijengsci.2018.03.004.
  • Hadi, A., M. Z. Nejad, A. Rastgoo, and M. Hosseini. 2018. Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory. Steel and Composite Structures 26 (6):663–72.
  • Hadi, A., A. Rastgoo, N. Haghighipour, and A. Bolhassani. 2018. Numerical modelling of a spheroid living cell membrane under hydrostatic pressure. Journal of Statistical Mechanics: Theory and Experiment 2018 (8):083501. doi:10.1088/1742-5468/aad369.
  • Hirsch, L. R., R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West. 2003. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proceedings of the National Academy of Sciences 100 (23):13549–54. doi:10.1073/pnas.2232479100.
  • Hosseini, M., H. H. Gorgani, M. Shishesaz, and A. Hadi. 2017. Size-dependent stress analysis of single-wall carbon nanotube based on strain gradient theory. International Journal of Applied Mechanics 9(6):1750087. doi:10.1142/S1758825117500879.
  • Hosseini, M., A. Hadi, A. Malekshahi, and M. Shishesaz. 2018. A review of size-dependent elasticity for nanostructures. Journal of Computational Applied MECHANICS 49 (1):197–211. doi:10.22059/JCAMECH.2018.259334.289.
  • Hosseini, M., M. Shishesaz, and A. Hadi. 2019. Thermoelastic analysis of rotating functionally graded micro/nanodisks of variable thickness. Thin-Walled Structures 134:508–23. doi:10.1016/j.tws.2018.10.030.
  • Hosseini, M., M. Shishesaz, K. N. Tahan, and A. Hadi. 2016. Stress analysis of rotating nano-disks of variable thickness made of functionally graded materials. International Journal of Engineering Science 109:29–53. doi:10.1016/j.ijengsci.2016.09.002.
  • Kadari, B., A. Bessaim, A. Tounsi, H. Heireche, A. A. Bousahla, and M. S. A. Houari. 2018. Buckling analysis of orthotropic nanoscale plates resting on elastic foundations. Journal of Nano Research 55:42. doi:10.4028/www.scientific.net/JNanoR.55.42.
  • Karamanli, A., and M. Aydogdu. 2019. Structural dynamics and stability analysis of 2D-FG microbeams with two-directional porosity distribution and variable material length scale parameter. Mechanics Based Design of Structures and Machines:1–28. doi:10.1080/15397734.2019.1627219.
  • Karami, B., M. Janghorban, and A. Tounsi. 2017. Effects of triaxial magnetic field on the anisotropic nanoplates. Steel and Composite Structures 25 (3):361–74.
  • Karami, B., M. Janghorban, and A. Tounsi. 2018a. Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles. Steel and Composite Structures 27 (2):201–16.
  • Karami, B., M. Janghorban, and A. Tounsi. 2018b. Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory. Thin-Walled Structures 129:251–64. doi:10.1016/j.tws.2018.02.025.
  • Karličić, D., M. Cajić, S. Adhikari, P. Kozić, and T. Murmu. 2017. Vibrating nonlocal multi-nanoplate system under inplane magnetic field. European Journal of Mechanics - A/Solids 64:29–45. doi:10.1016/j.euromechsol.2017.01.013.
  • Karličić, D., P. Kozić, S. Adhikari, M. Cajić, T. Murmu, and M. Lazarević. 2015. Nonlocal mass-nanosensor model based on the damped vibration of single-layer graphene sheet influenced by in-plane magnetic field. International Journal of Mechanical Sciences 96–97:132–42. doi:10.1016/j.ijmecsci.2015.03.014.
  • Kiani, K. 2012. Transverse wave propagation in elastically confined single-walled carbon nanotubes subjected to longitudinal magnetic fields using nonlocal elasticity models. Physica E: Low-Dimensional Systems and Nanostructures 45:86–96. doi:10.1016/j.physe.2012.07.015.
  • Kolahchi, R., M. S. Zarei, M. H. Hajmohammad, and A. Naddaf Oskouei. 2017. Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods. Thin-Walled Structures 113:162–9. doi:10.1016/j.tws.2017.01.016.
  • Li, C. 2017. Nonlocal Thermo-Electro-Mechanical coupling vibrations of axially moving piezoelectric nanobeams. Mechanics Based Design of Structures and Machines 45 (4):463–78. doi:10.1080/15397734.2016.1242079.
  • Li, L., and Y. Hu. 2016a. Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects. International Journal of Mechanical Sciences doi:10.1016/j.ijmecsci.2016.11.025.
  • Li, L., and Y. Hu. 2016b. Wave propagation in fluid-conveying viscoelastic carbon nanotubes based on nonlocal strain gradient theory. Computational Materials Science 112:282–8. doi:10.1016/j.commatsci.2015.10.044.
  • Li, L., and Y. Hu. 2017. Torsional vibration of bi-directional functionally graded nanotubes based on nonlocal elasticity theory. Composite Structures 172:242–50. doi:10.1016/j.compstruct.2017.03.097.
  • Loghman, A., M. Nasr, and M. Arefi. 2017. Nonsymmetric thermomechanical analysis of a functionally graded cylinder subjected to mechanical, thermal, and magnetic loads. Journal of Thermal Stresses 40 (6):765–82. doi:10.1080/01495739.2017.1280380.
  • Mazarei, Z., M. Z. Nejad, and A. Hadi. 2016. Thermo-elasto-plastic analysis of thick-walled spherical pressure vessels made of functionally graded materials. International Journal of Applied Mechanics 8 (4):1650054. doi:10.1142/S175882511650054X.
  • Mohammadi, M., M. Hosseini, M. Shishesaz, A. Hadi, and A. Rastgoo. 2019. Primary and secondary resonance analysis of porous functionally graded nanobeam resting on a nonlinear foundation subjected to mechanical and electrical loads. European Journal of Mechanics-A/Solids 77, 103793.
  • Murmu, T., M. A. McCarthy, and S. Adhikari. 2012. Vibration response of double-walled carbon nanotubes subjected to an externally applied longitudinal magnetic field: A nonlocal elasticity approach. Journal of Sound and Vibration 331 (23):5069–86. doi:10.1016/j.jsv.2012.06.005.
  • Narendar, S., S. S. Gupta, and S. Gopalakrishnan. 2012. Wave propagation in single-walled carbon nanotube under longitudinal magnetic field using nonlocal Euler–Bernoulli beam theory. Applied Mathematical Modelling 36 (9):4529–38. doi:10.1016/j.apm.2011.11.073.
  • Nejad, M., A. Rastgoo, and A. Hadi. 2014a. Exact elasto-plastic analysis of rotating disks made of functionally graded materials. International Journal of Engineering Science 85:47–57. doi:10.1016/j.ijengsci.2014.07.009.
  • Nejad, M. Z., A. Rastgoo, and A. Hadi. 2014b. Effect of exponentially-varying properties on displacements and stresses in pressurized functionally graded thick spherical shells with using iterative technique. Journal of Solid Mechanics 6 (4):366–77.
  • Nejad, M. Z., N. Alamzadeh, and A. Hadi. 2018. Thermoelastoplastic analysis of FGM rotating thick cylindrical pressure vessels in linear elastic-fully plastic condition. Composites Part B: Engineering 154:410–22. doi:10.1016/j.compositesb.2018.09.022.
  • Nejad, M. Z., and A. Hadi. 2016a. Eringen's non-local elasticity theory for bending analysis of bi-directional functionally graded Euler–Bernoulli nano-beams. International Journal of Engineering Science 106:1–9. doi:10.1016/j.ijengsci.2016.05.005.
  • Nejad, M. Z., and A. Hadi. 2016b. Non-local analysis of free vibration of bi-directional functionally graded Euler–Bernoulli nano-beams. International Journal of Engineering Science 105:1–11. doi:10.1016/j.ijengsci.2016.04.011.
  • Nejad, M. Z., A. Hadi, and A. Farajpour. 2017. Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials. Structural Engineering and Mechanics 63 (2):161–9. doi:10.1016/j.ijengsci.2016.04.011.
  • Norouzzadeh, A., and R. Ansari. 2018. Isogeometric vibration analysis of functionally graded nanoplates with the consideration of nonlocal and surface effects. Thin-Walled Structures 127:354–72. doi:10.1016/j.tws.2017.11.040.
  • Radić, N., and D. Jeremić. 2018. Analytical solution for buckling of orthotropic double-layered graphene sheets exposed to unidirectional in-plane magnetic field with various boundary conditions. Composites Part B: Engineering 142:9–23. doi:10.1016/j.compositesb.2017.12.054.
  • Romano, G., and R. Barretta. 2017. Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams. Composites Part B: Engineering 114 (Suppl C):184–8. doi:10.1016/j.compositesb.2017.01.008.
  • Sadd, M. H. 2009. Elasticity: Theory, applications, and numerics. Malden, MA: Academic Press.
  • Schneider, C. M., B. Zhao, R. Kozhuharova, S. Groudeva-Zotova, T. Mühl, M. Ritschel, I. Mönch, H. Vinzelberg, D. Elefant, and A. Graff. 2004. Towards molecular spintronics: Magnetotransport and magnetism in carbon nanotube-based systems. Diamond and Related Materials 13 (2):215–20. doi:10.1016/j.diamond.2003.10.009.
  • Sekiya, M., S. An, and M. Ata. 2014. Nanocommunication design in graduate-level education and research training programs at Osaka University. Journal of Nanoparticle Research: An Interdisciplinary Forum for Nanoscale Science and Technology 16 (9):2595. doi:10.1007/s11051-014-2595-8.
  • Sharma, A., B. Tripathi, and Y. K. Vijay. 2010. Dramatic improvement in properties of magnetically aligned CNT/polymer nanocomposites. Journal of Membrane Science 361 (1–2):89–95. doi:10.1016/j.memsci.2010.06.005.
  • She, G.-L., K.-M. Yan, Y.-L. Zhang, H.-B. Liu, and Y.-R. Ren. 2018. Wave propagation of functionally graded porous nanobeams based on non-local strain gradient theory. The European Physical Journal Plus 133 (9):368. doi:10.1140/epjp/i2018-12196-5.
  • She, G.-L., F.-G. Yuan, Y.-R. Ren, H.-B. Liu, and W.-S. Xiao. 2018. Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory. Composite Structures 203:614–23. doi:10.1016/j.compstruct.2018.07.063.
  • Shishesaz, M., M. Hosseini, K. Naderan Tahan, and A. Hadi. 2017. Analysis of functionally graded nanodisks under thermoelastic loading based on the strain gradient theory. Acta Mechanica 228 (12):4141–68. doi:10.1007/s00707-017-1939-8.
  • Shu, C., and Y. T. Chew. 1998. On the equivalence of generalized differential quadrature and highest order finite difference scheme. Computer Methods in Applied Mechanics and Engineering 155 (3–4):249–60. doi:10.1016/S0045-7825(97)00150-3.
  • Udupa, G., S. S. Rao, and K. V. Gangadharan. 2014. Functionally graded composite materials: An overview. Procedia Materials Science 5:1291–9. doi:10.1016/j.mspro.2014.07.442.
  • Wang, H., K. Dong, F. Men, Y. J. Yan, and X. Wang. 2010. Influences of longitudinal magnetic field on wave propagation in carbon nanotubes embedded in elastic matrix. Applied Mathematical Modelling 34 (4):878–89. doi:10.1016/j.apm.2009.07.005.
  • Yi, G.-C., C. Wang, and W. I. Park. 2005. ZnO nanorods: Synthesis, characterization and applications. Semiconductor Science and Technology 20 (4):S22.
  • Zamani Nejad, M., M. Jabbari, and A. Hadi. 2017. A review of functionally graded thick cylindrical and conical shells. Journal of Computational Applied Mechanics 48 (2):357–70. doi:10.22059/jcamech.2017.247963.220.
  • Zemri, A., M. S. A. Houari, A. A. Bousahla, and A. Tounsi. 2015. A mechanical response of functionally graded nanoscale beam: An assessment of a refined nonlocal shear deformation theory beam theory. Structural Engineering and Mechanics 54 (4):693–710. doi:10.12989/sem.2015.54.4.693.
  • Zhu, X., and L. Li. 2017. Longitudinal and torsional vibrations of size-dependent rods via nonlocal integral elasticity. International Journal of Mechanical Sciences 133:639–50. doi:10.1016/j.ijmecsci.2017.09.030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.