836
Views
118
CrossRef citations to date
0
Altmetric
Articles

Static and free vibration analysis of graphene platelets reinforced composite truncated conical shell, cylindrical shell, and annular plate using theory of elasticity and DQM

ORCID Icon, ORCID Icon &
Pages 496-524 | Received 16 May 2019, Accepted 17 Jul 2019, Published online: 22 Sep 2019

References

  • Amir, S., H. BabaAkbar-Zarei, and M. Khorasani. 2019. Flexoelectric vibration analysis of nanocomposite sandwich plates. Mechanics Based Design of Structures and Machines 1–18. doi:10.1080/15397734.2019.1624175.
  • Ansari, R., M. Faghih Shojaei, H. Rouhi, and M. Hosseinzadeh. 2015. A novel variational numerical method for analyzing the free vibration of composite conical shells. Applied Mathematical Modelling 39 (10–11):2849–60. doi:10.1016/j.apm.2014.11.012.
  • Arefi, M. 2014. A complete set of equations for piezo-magnetoelastic analysis of a functionally graded thick shell of revolution. Latin American Journal of Solids and Structures 11 (11):2073–92. doi:10.1590/S1679-78252014001100009.
  • Arefi, M., E. Mohammad-Rezaei Bidgoli, R. Dimitri, M. Bacciocchi, and F. Tornabene. 2019. Nonlocal bending analysis of curved nanobeams reinforced by graphene nanoplatelets. Composites Part B: Engineering 166:1–12. doi:10.1016/j.compositesb.2018.11.092.
  • Arefi, M., E. Mohammad-Rezaei Bidgoli, R. Dimitri, and F. Tornabene. 2018. Free vibrations of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets. Aerospace Science and Technology 81:108–17. doi:10.1016/j.ast.2018.07.036.
  • Arefi, M., E. Mohammad-Rezaei Bidgoli, R. Dimitri, F. Tornabene, and J. N. Reddy. 2019. Size-dependent free vibrations of fg polymer composite curved nanobeams reinforced with graphene nanoplatelets resting on pasternak foundations. Applied Sciences 9 (8):1580. doi:10.3390/app9081580.
  • Arefi, M., M., Mohammadi, A. Tabatabaeian, R. Dimitri, and F. Tornabene. 2018. Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels. Steel and Composite Structures 27 (4):525–36.
  • Arefi, M., and G. H. Rahimi. 2012. Three-dimensional multi-field equations of a functionally graded piezoelectric thick shell with variable thickness, curvature and arbitrary nonhomogeneity. Acta Mechanica 223 (1):63–79. doi:10.1007/s00707-011-0536-5.
  • Arefi, M., and G. H. Rahimi. 2014. Application of shear deformation theory for two dimensional electro-elastic analysis of a FGP cylinder. Smart Structures and Systems 13 (1):1–24. doi:10.12989/sss.2014.13.1.001.
  • Arefi, M., G. H. Rahimi, and M. J. Khoshgoftar. 2011. Optimized design of a cylinder under mechanical, magnetic and thermal loads as a sensor or actuator using a functionally graded piezomagnetic material. International Journal of Physical Sciences 6 (27):6315–22.
  • Arefi, M., G. H. Rahimi, and M. J. Khoshgoftar. 2012. Exact solution of a thick walled functionally graded piezoelectric cylinder under mechanical, thermal and electrical loads in the magnetic field. Smart Structures and Systems 9 (5):427–39. doi:10.12989/sss.2012.9.5.427.
  • Bagheri, H., Y. Kiani, and M. R. Eslami. 2018. Free vibration of joined conical–cylindrical–conical shells. Acta Mechanica 229 (7):2751–64. doi:10.1007/s00707-018-2133-3.
  • Barati, M. R., and A. M. Zenkour. 2018. Vibration analysis of functionally graded graphene platelet reinforced cylindrical shells with different porosity distributions. Mechanics of Advanced Materials and Structures 26 (18):1580–8. doi:10.1080/15376494.2018.1444235.
  • Das, A., and A. Karmakar. 2018. Free vibration characteristics of functionally graded pre-twisted conical shells under rotation. Journal of the Institution of Engineers (India): Series C 99 (6):681–92. doi:10.1007/s40032-017-0378-6.
  • Dickerson, J. H. 2011. Superhydrophobic and superhydrophilic properties of graphene for industrial applications. Advanced Coatings & Surface Technology 24 (3):7–8.
  • Ding, J., L. Chu, L. Xin, and G. Dui. 2018. Nonlinear vibration analysis of functionally graded beams considering the influences of the rotary inertia of the cross-section and neutral surface position. Mechanics Based Design of Structures and Machines 46 (2):225–37. doi:10.1080/15397734.2017.1329020.
  • Dong, Y. H., L. W. He, L. Wang, Y. H. Li, and J. Yang. 2018. Buckling of spinning functionally graded graphene reinforced porous nanocomposite cylindrical shells: An analytical study. Aerospace Science and Technology 82–83:466. doi:10.1016/j.ast.2018.09.037.
  • Dong, Y. H., Y. H. Li, D. Chen, and J. Yang. 2018. Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion. Composites Part B: Engineering 145:1–13. doi:10.1016/j.compositesb.2018.03.009.
  • Dong, Y. H., B. Zhu, Y. Wang, Y. H. Li, and J. Yang. 2018. Nonlinear free vibration of graded graphene reinforced cylindrical shells: Effects of spinning motion and axial load. Journal of Sound and Vibration 437:79–96. doi:10.1016/j.jsv.2018.08.036.
  • Elansary, A. A., A. O. Nassef, and A. A. E. Damatty. 2018. Optimum design of composite conical tanks under hydrostatic pressure. Advances in Structural Engineering 21 (13):2030–44. doi:10.1177/1369433218764976.
  • Ersoy, H., K. Mercan, and Ö. Civalek. 2018. Frequencies of FGM shells and annular plates by the methods of discrete singular convolution and differential quadrature methods. Composite Structures 183:7–20. doi:10.1016/j.compstruct.2016.11.051.
  • Guan, X., K. Sok, A. Wang, C. Shuai, J. Tang, and Q. Wang. 2019. A general vibration analysis of functionally graded porous structure elements of revolution with general elastic restraints. Composite Structures 209:277–99. doi:10.1016/j.compstruct.2018.10.103.
  • Hua, L., and K. Y. Lam. 2000. The generalized differential quadrature method for frequency analysis of a rotating conical shell with initial pressure. International Journal for Numerical Methods in Engineering 48 (12):1703–22. doi:10.1002/1097-0207(20000830)48:12<1703::AID-NME961>3.0.CO;2-X.
  • Izyan, M. D., Nurul, K. K. Viswanathan, Z. A. Aziz, J. H. Lee, and K. Prabakar. 2017. Free vibration of layered truncated conical shells filled with quiescent fluid using spline method. Composite Structures 163:385–98. doi:10.1016/j.compstruct.2016.12.011.
  • Javed, S. 2018. Free vibration characteristic of laminated conical shells based on higher-order shear deformation theory. Composite Structures 204:80–7. doi:10.1016/j.compstruct.2018.07.065.
  • Khatri, K. N., and N. S. Bardell. 1995. The variation of the stiffness coefficients for laminated open conical shell panels. Composite Structures 32 (1):287–92. doi:10.1016/0263-8223(95)00087-9.
  • Khoshgoftar, M. J., G. H. Rahimi, and M. Arefi. 2013. Exact solution of functionally graded thick cylinder with finite length under longitudinally non-uniform pressure. Mechanics Research Communications 51:61–6. doi:10.1016/j.mechrescom.2013.05.001.
  • Kiani, Y. 2017. Analysis of FG-CNT reinforced composite conical panel subjected to moving load using Ritz method. Thin-Walled Structures 119:47–57. doi:10.1016/j.tws.2017.05.031.
  • Kiani, Y., R. Dimitri, and F. Tornabene. 2018. Free vibration study of composite conical panels reinforced with FG-CNTs. Engineering Structures 172:472–82. doi:10.1016/j.engstruct.2018.06.006.
  • Kim, H., Y. Miura, and C. W. Macosko. 2010. Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chemistry of Materials 22 (11):3441–50. doi:10.1021/cm100477v.
  • Larbi, L. O., A. Kaci, M. S. A. Houari, and A. Tounsi. 2013. An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams. Mechanics Based Design of Structures and Machines 41 (4):421–33. doi:10.1080/15397734.2013.763713.
  • Lee, J. 2018. Free vibration analysis of joined conical-cylindrical shells by matched Fourier-Chebyshev Collocation Method. Journal of Mechanical Science and Technology 32 (10):4601–12. doi:10.1007/s12206-018-0907-0.
  • Li, C. 2017. Nonlocal thermo-electro-mechanical coupling vibrations of axially moving piezoelectric nanobeams. Mechanics Based Design of Structures and Machines 45 (4):463–78. doi:10.1080/15397734.2016.1242079.
  • Li, Q., Y. Guo, W. Li, S. Qiu, C. Zhu, X. Wei, M. Chen, C. Liu, S. Liao, Y. Gong., et al. 2014. Ultrahigh thermal conductivity of assembled aligned multilayer graphene/epoxy composite. Chemistry of Materials 26 (15):4459–65. doi:10.1021/cm501473t.
  • Liu, D., S. Kitipornchai, W. Chen, and J. Yang. 2018. Three-dimensional buckling and free vibration analyses of initially stressed functionally graded graphene reinforced composite cylindrical shell. Composite Structures 189:560–9. doi:10.1016/j.compstruct.2018.01.106.
  • Mao, J.-J., L.-L. Ke, J. Yang, S. Kitipornchai, and Y.-S. Wang. 2018. Thermoelastic instability of functionally graded materials with interaction of frictional heat and contact resistance. Mechanics Based Design of Structures and Machines 46 (2):139–56. doi:10.1080/15397734.2017.1319283.
  • Mehditabar, A., Akbari Alashti, R., and M. Pashaei. 2013. Three-dimensional magneto-thermo-elastic analysis of functionally graded truncated conical shells. International Journal of Engineering 26 (12):1445. doi:10.5829/idosi.ije.2013.26.12c.05.
  • Mehri, M., H. Asadi, and Q. Wang. 2016. Buckling and vibration analysis of a pressurized CNT reinforced functionally graded truncated conical shell under an axial compression using HDQ method. Computer Methods in Applied Mechanics and Engineering 303:75–100. doi:10.1016/j.cma.2016.01.017.
  • Mohammad-Rezaei Bidgoli, E., and M. Arefi. 2019. Free vibration analysis of micro plate reinforced with functionally graded graphene nanoplatelets based on modified strain-gradient formulation. Journal of Sandwich Structures & Materials. doi:10.1177/1099636219839302.
  • Mohammadi, M., M. Arefi, R. Dimitri, and F. Tornabene. 2019. Higher-order thermo-elastic analysis of FG-CNTRC cylindrical vessels surrounded by a Pasternak foundation. Nanomaterials 9 (1):79. doi:10.3390/nano9010079.
  • Pinto Correia, I. F., C. M. Mota Soares, C. A. Mota Soares, and J. Herskovits. 2003. Analysis of laminated conical shell structures using higher order models. Composite Structures 62 (3–4):383–90. doi:10.1016/j.compstruct.2003.09.009.
  • Rafiee, M. A., J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu, and N. Koratkar. 2009. Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3 (12):3884–90. doi:10.1021/nn9010472.
  • Reddy, J. N., C. M. Wang, and S. Kitipornchai. 1999. Axisymmetric bending of functionally graded circular and annular plates. European Journal of Mechanics – A/Solids 18 (2):185–99. doi:10.1016/S0997-7538(99)80011-4.
  • Rezaiee-Pajand, M., M. Mokhtari, and S. M. Hozhabrossadati. 2019. Application of Hencky bar-chain model to buckling analysis of elastically restrained Timoshenko axially functionally graded carbon nanotube reinforced composite beams. Mechanics Based Design of Structures and Machines 47 (5):599–620. doi:10.1080/15397734.2019.1596129.
  • Rout, M., S. S. Hota, and A. Karmakar. 2019. Thermoelastic free vibration response of graphene reinforced laminated composite shells. Engineering Structures 178:179–90. doi:10.1016/j.engstruct.2018.10.029.
  • Safarpour, H., Hajilak, Z.E., and H. Mostafa Habibi. 2018. A size-dependent exact theory for thermal buckling, free and forced vibration analysis of temperature dependent FG multilayer GPLRC composite nanostructures restring on elastic foundation. International Journal of Mechanics and Materials in Design. doi:10.1007/s10999-018-9431-8.
  • Shakouri, M. 2019. Free vibration analysis of functionally graded rotating conical shells in thermal environment. Composites Part B: Engineering 163:574–84. doi:10.1016/j.compositesb.2019.01.007.
  • Shen, H.-S., and Y. Xiang. 2018. Postbuckling of functionally graded graphene-reinforced composite laminated cylindrical shells subjected to external pressure in thermal environments. Thin-Walled Structures 124:151–60. doi:10.1016/j.tws.2017.12.005.
  • Shen, H.-S., Y. Xiang, and Y. Fan. 2017. Nonlinear vibration of functionally graded graphene-reinforced composite laminated cylindrical shells in thermal environments. Composite Structures 182:447–56. doi:10.1016/j.compstruct.2017.09.010.
  • Shen, H.-S., Y. Xiang, Y. Fan, and D. Hui. 2018. Nonlinear vibration of functionally graded graphene-reinforced composite laminated cylindrical panels resting on elastic foundations in thermal environments. Composites Part B: Engineering 136:177–86. doi:10.1016/j.compositesb.2017.10.032.
  • Shu, C. 1996. Free vibration analysis of composite laminated conical shells by generalized differential quadrature. Journal of Sound and Vibration 194 (4):587–604. doi:10.1006/jsvi.1996.0379.
  • Shu, C. 2012. Differential quadrature and its application in engineering. New York: Springer.
  • Sofiyev, A. H. 2007. Vibration and stability of composite cylindrical shells containing a FG layer subjected to various loads. Structural Engineering and Mechanics 27 (3):365–91. doi:10.12989/sem.2007.27.3.365.
  • Sofiyev, A. H. 2011. On the vibration and stability of clamped FGM conical shells under external loads. Journal of Composite Materials 45 (7):771–88. doi:10.1177/0021998310373515.
  • Sofiyev, A. H. 2019. The buckling and vibration analysis of coating-FGM-substrate conical shells under hydrostatic pressure with mixed boundary conditions. Composite Structures 209:686–93. doi:10.1016/j.compstruct.2018.10.104.
  • Sofiyev, A. H. 2019. Review of research on the vibration and buckling of the FGM conical shells. Composite Structures 211:301–17. doi:10.1016/j.compstruct.2018.12.047.
  • Sofiyev, A. H., M. Avcar, P. Ozyigit, and S. Adigozel. 2009. The free vibration of non-homogeneous truncated conical shells on a Winkler foundation. International Journal of Engineering & Applied Sciences 1 (1):34–41.
  • Sofiyev, A. H., A. Deniz, I. H. Akçay, and E. Yusufoğlu. 2006. The vibration and stability of a three-layered conical shell containing an FGM layer subjected to axial compressive load. Acta Mechanica 183 (3–4):129–44. doi:10.1007/s00707-006-0328-5.
  • Sofiyev, A. H., D. Hui, A. A. Valiyev, F. Kadioglu, S. Turkaslan, G. Q. Yuan, V. Kalpakci, and A. Özdemir. 2016. Effects of shear stresses and rotary inertia on the stability and vibration of sandwich cylindrical shells with FGM core surrounded by elastic medium. Mechanics Based Design of Structures and Machines 44 (4):384–404. doi:10.1080/15397734.2015.1083870.
  • Sofiyev, A. H., and Z. Karaca. 2009. The vibration and buckling of laminated non-homogeneous orthotropic conical shells subjected to external pressure. European Journal of Mechanics – A/Solids 28 (2):317–28. doi:10.1016/j.euromechsol.2008.06.002.
  • Sofiyev, A. H., and N. Kuruoglu. 2011. Natural frequency of laminated orthotropic shells with different boundary conditions and resting on the Pasternak type elastic foundation. Composites Part B: Engineering 42 (6):1562–70. doi:10.1016/j.compositesb.2011.04.015.
  • Sofiyev, A. H., and N. Kuruoglu. 2012. Vibration analysis of FGM truncated and complete conical shells resting on elastic foundations under various boundary conditions. Journal of Engineering Mathematics 77 (1):131–45. doi:10.1007/s10665-012-9535-3.
  • Sofiyev, A. H., M. H. Omurtag, and E. Schnack. 2009. The vibration and stability of orthotropic conical shells with non-homogeneous material properties under a hydrostatic pressure. Journal of Sound and Vibration 319 (3–5):963–83. doi:10.1016/j.jsv.2008.06.033.
  • Song, Z. G., L. W. Zhang, and K. M. Liew. 2016. Vibration analysis of CNT-reinforced functionally graded composite cylindrical shells in thermal environments. International Journal of Mechanical Sciences 115–116:339–47. doi:10.1016/j.ijmecsci.2016.06.020.
  • Talebitooti, M. 2013. Three-dimensional free vibration analysis of rotating laminated conical shells: Layerwise differential quadrature (LW-DQ) method. Archive of Applied Mechanics 83 (5):765–81. doi:10.1007/s00419-012-0716-3.
  • Tornabene, F. 2009. Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution. Computer Methods in Applied Mechanics and Engineering 198 (37–40):2911–35. doi:10.1016/j.cma.2009.04.011.
  • Tornabene, F., N. Fantuzzi, F. Ubertini, and E. Viola. 2015. Strong formulation finite element method based on differential quadrature: A survey. Applied Mechanics Reviews 67 (2):020801–55. doi:10.1115/1.4028859.
  • Tufekci, E., U. Eroglu, and S. A. Aya. 2016. Exact solution for in-plane static problems of circular beams made of functionally graded materials. Mechanics Based Design of Structures and Machines 44 (4):476–94. doi:10.1080/15397734.2015.1121398.
  • Viola, E., L. Rossetti, N. Fantuzzi, and F. Tornabene. 2014. Static analysis of functionally graded conical shells and panels using the generalized unconstrained third order theory coupled with the stress recovery. Composite Structures 112:44–65. doi:10.1016/j.compstruct.2014.01.039.
  • Wang, A., H. Chen, Y. Hao, and W. Zhang. 2018. Vibration and bending behavior of functionally graded nanocomposite doubly-curved shallow shells reinforced by graphene nanoplatelets. Results in Physics 9:550–9. doi:10.1016/j.rinp.2018.02.062.
  • Wang, X., X. Liang, and C. Jin. 2017. Accurate dynamic analysis of functionally graded beams under a moving point load. Mechanics Based Design of Structures and Machines 45 (1):76–91. doi:10.1080/15397734.2016.1145060.
  • Wang, Y., C. Feng, Z. Zhao, F. Lu, and J. Yang. 2018. Torsional buckling of graphene platelets (GPLs) reinforced functionally graded cylindrical shell with cutout. Composite Structures 197:72–9. doi:10.1016/j.compstruct.2018.05.056.
  • Wang, Y., C. Feng, Z. Zhao, and J. Yang. 2018. Buckling of graphene platelet reinforced composite cylindrical shell with cutout. International Journal of Structural Stability and Dynamics 18 (03):1850040. doi:10.1142/S0219455418500402.
  • Wang, Y., C. Feng, Z. Zhao, and J. Yang. 2018. Eigenvalue buckling of functionally graded cylindrical shells reinforced with graphene platelets (GPL). Composite Structures 202:38–46. Special issue dedicated to Ian Marshall, (October): doi:10.1016/j.compstruct.2017.10.005.
  • Wu, C.-P., and Y.-C. Hung. 1999. Asymptotic theory of laminated circular conical shells. International Journal of Engineering Science 37 (8):977–1005. doi:10.1016/S0020-7225(98)00108-6.
  • Wu, C.-P., Y.-C. Hung, and J.-Y. Lo. 2002. A refined asymptotic theory of laminated circular conical shells. European Journal of Mechanics – A/Solids 21 (2):281–300. doi:10.1016/S0997-7538(01)01199-8.
  • Wu, C.-P., and C.-Y. Lee. 2001. Differential quadrature solution for the free vibration analysis of laminated conical shells with variable stiffness. International Journal of Mechanical Sciences 43 (8):1853–69. doi:10.1016/S0020-7403(01)00010-8.
  • Wu, C.-P., Y.-F. Pu, and Y.-H. Tsai. 2005. Asymptotic solutions of axisymmetric laminated conical shells. Thin-Walled Structures 43 (10):1589–614. doi:10.1016/j.tws.2005.06.002.
  • Wu, C.-P., and C.-H. Wu. 2000. Asymptotic differential quadrature solutions for the free vibration of laminated conical shells. Computational Mechanics 25 (4):346–57. doi:10.1007/s004660050482.
  • Yuda, H., and Z. Xiaoguang. 2011. Parametric vibrations and stability of a functionally graded plate. Mechanics Based Design of Structures and Machines 39 (3):367–77. doi:10.1080/15397734.2011.557970.
  • Yun, W., X. Rongqiao, and D. Haojiang. 2010. Three-dimensional solution of axisymmetric bending of functionally graded circular plates. Composite Structures 92 (7):1683–93. doi:10.1016/j.compstruct.2009.12.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.