306
Views
25
CrossRef citations to date
0
Altmetric
Articles

Vibration analysis of rotating fully-bonded and delaminated sandwich beam with CNTRC face sheets and AL-foam flexible core in thermal and moisture environments

&
Pages 584-614 | Received 18 Nov 2018, Accepted 18 Jul 2019, Published online: 30 Jul 2019

References

  • AkhavanAlavi, S. M., M. Mohammadimehr, and S. H. Edjtahed. 2019. Active control of micro Reddy beam integrated with functionally graded nanocomposite sensor and actuator based on linear quadratic regulator method. European Journal of Mechanics: A/Solids 74:449–461. doi: 10.1016/j.euromechsol.2018.12.008.
  • Ghorbanpour Arani, A., M. Hashemian, A. Loghman, and M. Mohammadimehr. 2011. Study of dynamic stability of the double-walled carbon nanotube under axial loading embedded in an elastic medium by the energy method. Journal of Applied Mechanics and Technical Physics 52 (5):815–824. doi: 10.1134/S0021894411050178.
  • Arefi, M., and A. H. Soltan Arani. 2018. Higher-order shear deformation bending results of a magneto-electro-thermo-elastic functionally graded nano-beam in thermal, mechanical, electrical and magnetic environments. Mechanics Based Design of Structures and Machines 46 (6):669. DOI:10.1080/15397734.2018.1434002.
  • Aslan, Z., and F. Daricik. 2016. Effects of multiple delaminations on the compressive, tensile, flexural, and buckling behaviour of E-glass/epoxy composites. Composites Part B: Engineering 100:186–196. doi: 10.1016/j.compositesb.2016.06.069.
  • Allen, H. G. 1969. Analysis and design of structural sandwich panels. London: Pergamon Press.
  • Chen, D., S. Kitipornchai, and J. Yang. 2018. Dynamic response and energy absorption of functionally graded porous structures. Materials & Design 140:473–87. doi: 10.1016/j.matdes.2017.12.019.
  • Ding, J., L. Chu, L. Xin, and G. Dui. 2018. Nonlinear vibration analysis of functionally graded beams considering the influences of the rotary inertia of the cross section and neutral surface position. Mechanics Based Design of Structures and Machines 46 (2):225–237. doi: 10.1080/15397734.2017.1329020.
  • Dong, Y. H., Y. H. Li, D. Chen, and J. Yang. 2018. Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion. Composites Part B: Engineering 145:1–13. doi: 10.1016/j.compositesb.2018.03.009.
  • Della, C. N., and D. Shu. 2008. Free vibration analysis of multiple delaminated beams under axial compressive load. Journal of Reinforced Plastics and Composites 28 (11):1365–1381.
  • Dong, Y. H., B. Zhu, Y. Wang, Y. H. Li, and J. Yang. 2018. Nonlinear free vibration of graded graphene reinforced cylindrical shells: Effects of spinning motion and axial load. Journal of Sound and Vibration 437:79–96. doi: 10.1016/j.jsv.2018.08.036.
  • Esawi, A. M. K., and M. M. Farag. 2007. Carbon nanotube reinforced composites: Potential and current challenges. Materials & Design 28 (9):2394–2401. doi: 10.1016/j.matdes.2006.09.022.
  • Fidelus, J. D., E. Wiesel, F. H. Gojny, K. Schulte, and H. D. Wagner. 2005. Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites. Composites Part A: Applied Science and Manufacturing 36 (11):1555–1561. doi: 10.1016/j.compositesa.2005.02.006.
  • Frostig, Y. 1992. Behavior of delaminated sandwich beam with transversely flexible core-high order theory. Composite Structures 20 (1):1–16. doi: 10.1016/0263-8223(92)90007-Y.
  • Frostig, Y. 1997. Hygothermal (environmental) effects in high order bending of sandwich beams with a flexible core and a discontinuous skin. Composite Structures 37 (2):205–221. doi: 10.1016/S0263-8223(97)80013-X.
  • Frostig, Y. 2009. Elastica of sandwich panels with a transversely flexible core–A high-order theory approach. International Journal of Solids and Structures 46 (10):2043–2059. doi: 10.1016/j.ijsolstr.2008.05.007.
  • Frostig, Y. 2014. Nonlinear behavior of a face sheet debonded sandwich panel-Thermal effects. International Journal of Non-Linear Mechanics 64:1–25. doi: 10.1016/j.ijnonlinmec.2014.03.001.
  • Frostig, Y., M. Baruch, O. Vilnay, and I. Sheinman. 1992. A high order theory for the bending of sandwich beams with a flexible core. Journal of Engineering Mechanics 118 (5):1026–1043. doi: 10.1061/(ASCE)0733-9399(1992)118:5(1026).
  • Frostig, Y., G. A. Kardomateas, and N. Rodcheuy. 2016. Nonlinear response of curved sandwich panels-extended high-order approach. International Journal of Non-Linear Mechanics 81:177–196. doi: 10.1016/j.ijnonlinmec.2016.01.011.
  • Frostig, Y., and O. T. Thomsen. 2004. High-order free vibration of sandwich panels with a flexible core. International Journal of Solids and Structures 41 (5–6):1697–1724. doi: 10.1016/j.ijsolstr.2003.09.051.
  • Grygorowicz, M., K. Magnucki, and M. Malinowski. 2015. Elastic buckling of a sandwich beam with variable mechanical properties of the core. Thin-Walled Structures 87:127–132. doi: 10.1016/j.tws.2014.11.014.
  • Hammami, M., A. El Mahi, C. Karra, and M. Haddar. 2016. Nonlinear behaviour of glass fibre reinforced composites with delamination. Composites Part B: Engineering 92:350–359. doi: 10.1016/j.compositesb.2016.02.031.
  • Jafari-Talookolaei, R. A., M. Abedi, M. H. Kargarnovin, and M. T. Ahmadian. 2015. Dynamics of a generally layered composite beam with single delamination based on the shear deformation theory. Science and Engineering of Composite Materials 22 (1):57–70. doi: 10.1515/secm-2013-0183.
  • Kargarnovin, M. H., M. T. Ahmadian, and R. A. Jafari-Talookolaei. 2012. Dynamics of a delaminated Timoshenko beam subjected to a moving oscillatory mass. Mechanics Based Design of Structures and Machines 40 (2):218–240. doi: 10.1080/15397734.2012.658504.
  • Kumar, S. K., R. Ganguli, and D. Harursampath. 2013. Partial delamination modeling in composite beams using a finite element method. Finite Elements in Analysis and Design 76:1–12. doi: 10.1016/j.finel.2013.07.007.
  • Kim, H. Y. 2003. Vibration-based damage identification using reconstructed FRFs in composite structures. Journal of Sound and Vibration 259 (5):1131–1146. doi: 10.1006/jsvi.2002.5119.
  • Li, D., and G. Qing. 2014. Free vibration analysis of composite laminates with delamination based on state space theory. Mechanics of Advanced Materials and Structures 21 (5):402–411. doi: 10.1080/15376494.2012.697602.
  • Liu, Y., and D. W. Shu. 2013. Free vibration analysis of rotating Timoshenko beams with multiple delaminations. Composites Part B: Engineering 44 (1):733–739. doi: 10.1016/j.compositesb.2012.01.037.
  • Liu, Y., and D. W. Shu. 2014. Free vibration analysis of exponential functionally graded beams with a single delamination. Composites Part B: Engineering 59:166–172. doi: 10.1016/j.compositesb.2013.10.026.
  • Minghui, F., L. Zuoqiu, and Y. Jiuren. 2002. Delamination analysis of sandwich beam: High-order theory. AIAA Journal 40 (5):981–986. doi: 10.2514/2.1737.
  • Mohammadimehr, M., and M. Mehrabi. 2017. Stability and free vibration analyses of double-bonded micro composite sandwich cylindrical shells conveying fluid flow. Applied Mathematical Modelling 47:685–709. doi: 10.1016/j.apm.2017.03.054.
  • Mohammadimehr, M., M. A. Mohammadimehr, and P. Dashti. 2016. Size-dependent effect on biaxial and shear nonlinear buckling analysis of nonlocal isotropic and orthotropic micro-plate based on surface stress and modified couple stress theories using differential quadrature method. Applied Mathematics and Mechanics 37 (4):529–54. doi: 10.1007/s10483-016-2045-9.
  • Mohammadimehr, M., and M. Mostafavifar. 2016. Free vibration analysis of sandwich plate with a transversely flexible core and FG-CNTs reinforced nanocomposite face sheets subjected to magnetic field and temperature-dependent material properties using SGT. Composites Part B: Engineering 94:253–270. doi: 10.1016/j.compositesb.2016.03.030.
  • Mohammadimehr, M., R. Rostami, and M. Arefi. 2016. Electro-elastic analysis of a sandwich thick plate considering FG core and composite piezoelectric layers on Pasternak foundation using TSDT. Steel and Composite Structures 20 (3):513–543. doi: 10.12989/scs.2016.20.3.513.
  • Mohammadimehr, M., and S. Shahedi. 2016. Nonlinear magneto-electro-mechanical vibration analysis of double-bonded sandwich Timoshenko microbeams based on MSGT using GDQM. Steel and Composite Structures 21 (1):1–36. doi: 10.12989/scs.2016.21.1.001.
  • Mohammadimehr, M., and S. Shahedi. 2017. High-order buckling and free vibration analysis of two types sandwich beam including AL or PVC-foam flexible core and CNTs reinforced nanocomposite face sheets using GDQM. Composites Part B: Engineering 108:91–107. doi: 10.1016/j.compositesb.2016.09.040.
  • Nayak, B., S. K. Dwivedy, and K. S. R. K. Murthy. 2014. Dynamic stability of a rotating sandwich beam with magneto-rheological elastomer core. European Journal of Mechanics: A/Solids 47:143–155. doi: 10.1016/j.euromechsol.2014.03.004.
  • Oh, J., M. Cho, and J. S. Kim. 2005. Dynamic analysis of composite plate with multiple delaminations based on higher-order zigzag theory. International Journal of Solids and Structures 42 (23):6122–6140. doi: 10.1016/j.ijsolstr.2005.06.006.
  • Ovesy, H. R., M. Asghari Mooneghi, and M. Kharazi. 2015. Post-buckling analysis of delaminated composite laminates with multiple through-the-width delaminations using a novel layerwise theory. Thin-Walled Structures 94:98–106. doi: 10.1016/j.tws.2015.03.028.
  • Plantema, F. J. 1966. Sandwich construction. New York: John Wiley and Sons.
  • Sayyidmousavi, A., K. Malekzadeh, and H. Bougharara. 2012. Finite element buckling analysis of laminated composite sandwich panels with transversely flexible core containing a face/core debond. Journal of Composite Materials 46 (2):193–202. doi: 10.1177/0021998311410495.
  • Schwarts-Givli, H., O. Rabinovitch, and Y. Frostig. 2007a. High-order nonlinear contact effects in cyclic loading of delaminated sandwich panels. Composites Part B: Engineering 38 (1):86–101. doi: 10.1016/j.compositesb.2006.03.011.
  • Schwarts-Givli, H., O. Rabinovitch, and Y. Frostig. 2007b. High-order nonlinear contact effects in the dynamic behavior of delaminated sandwich panels with a flexible core. International Journal of Solids and Structures 44 (1):77–99. doi: 10.1016/j.ijsolstr.2006.04.016.
  • Schwarts-Givli, H., O. Rabinovitch, and Y. Frostig. 2008. Free vibration of delaminated unidirectional sandwich panels with a transversely flexible core and general boundary conditions – A high-order approach. Journal of Sandwich Structures & Materials 10 (2):99–131. doi: 10.1177/1099636207076484.
  • Shahedi, S., and M. Mohammadimehr. 2017. Nonlinear high-order dynamic stability of AL-foam flexible cored sandwich beam with variable mechanical properties and CNTs reinforced composite face sheets in thermal environment. Journal of Sandwich Structures and Materials. doi: 10.1177/1099636217738908.
  • Shu, C. 2000. Differential quadrature and its application in engineering. New York: Springer Publication.
  • Shu, C., and H. Du. 1997. Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analysis of beams and plates. International Journal of Solids and Structures 34:819–835. doi: 10.1016/S0020-7683(96)00057-1.
  • Sun, W., X. Yan, and F. Gao. 2018. Analysis of frequency-domain vibration response of thin plate attached with viscoelastic free layer damping. Mechanics Based Design of Structures and Machines 46 (2):209–224. doi: 10.1080/15397734.2017.1327359.
  • Sofiyev, A. H., D. Hui, A. A. Valiyev, F. Kadioglu, S. Turkaslan, G. Q. Yuan, V. Kalpakci, and A. Özdemir. 2016. Effects of shear stresses and rotary inertia on the stability and vibration of sandwich cylindrical shells with FGM core surrounded by elastic medium. Mechanics Based Design of Structures and Machines 44 (4):384–404. doi: 10.1080/15397734.2015.1083870.
  • Vo, T. P., H. T. Thai, T. K. Nguyen, F. Inam, and J. Lee. 2015. A quasi-3D theory for vibration and buckling of functionally graded sandwich beams. Composite Structures 119:1–12. doi: 10.1016/j.compstruct.2014.08.006.
  • Wang, Z. X., and H. S. Shen. 2011. Nonlinear vibration of nanotube-reinforced composite plates in thermal environments. Computational Materials Science 58 (8):2319–2330. doi: 10.1016/j.commatsci.2011.03.005.
  • Wang, Y., and X. Wang. 2016. Free vibration analysis of soft-core sandwich beams by the novel weak form quadrature element method. Journal of Sandwich Structures & Materials 18 (3):294–320. doi: 10.1177/1099636215601373.
  • Xin, J., J. Wang, J. Yao, and Q. Han. 2011. Vibration, buckling and dynamic stability of a cracked cylindrical shell with time-varying rotating speed. Mechanics Based Design of Structures and Machines 39 (4):461–490. doi: 10.1080/15397734.2011.569301.
  • Yang, J., D. Chen, and S. Kitipornchai. 2018. Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method. Composite Structures 193:281–294. doi: 10.1016/j.compstruct.2018.03.090.
  • Yas, M. H., and N. Samadi. 2012. Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation. International Journal of Pressure Vessels and Piping 98:119–128. doi: 10.1016/j.ijpvp.2012.07.012.
  • Zenkert, D. 1995. An introduction to sandwich construction. London: Chameleon Press Ltd.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.