162
Views
32
CrossRef citations to date
0
Altmetric
Articles

Memory response on thermal wave propagation in an elastic solid with voids

ORCID Icon &
Pages 326-347 | Received 25 Apr 2019, Accepted 01 Aug 2019, Published online: 12 Aug 2019

References

  • Abbas, I. A. 2015. Analytical solution for a free vibration of a thermoelastic hollow sphere. Mechanics Based Design of Structures and Machines 43 (3):265–276. doi: 10.1080/15397734.2014.956244.
  • Abbas, I. A. 2017. Free vibration of a thermoelastic hollow cylinder under two-temperature generalized thermoelastic theory. Mechanics Based Design of Structures and Machines 45 (3):395–405. doi: 10.1080/15397734.2016.1231065.
  • Aouadi, M. 2010. A theory of thermoelastic diffusion materials with voids. Zeitschrift Für Angewandte Mathematik Und Physik 61:357–379. doi: 10.1007/s00033-009-0016-0.
  • Atangana, A., and A. Secer. 2013. A Note on fractional order derivatives and table of fractional derivatives of some special functions. Abstract and Applied Analysis 2013:Article ID 279681 (1 pp.) doi: 10.1155/2013/279681.
  • Bachher, M., N. Sarkar, and A. Lahiri. 2015. Fractional order thermoelastic interactions in an infinite porous material due to distributed time-dependent heat sources. Meccanica 50 (8):2167–2178. doi: 10.1007/s11012-015-0152-x.
  • Biswas, S. 2019a. Fundamental solution of steady oscillations for porous materials with dual-phase-lag model in micropolar thermoelasticity. Mechanics Based Design of Structures and Machines 47 (4):430–452. doi: 10.1080/15397734.2018.1557528.
  • Biswas, S. 2019b. Modeling of memory-dependent derivatives in orthotropic medium with three-phase-lag model under the effect of magnetic field. Mechanics Based Design of Structures and Machines 47 (3):302–318. doi: 10.1080/15397734.2018.1548968.
  • Caputo, M. 1967. Linear models of dissipation whose Q is almost frequency independent II. Geophysical Journal International 3:529–539. doi: 10.1111/j.1365-246X.1967.tb02303.x.
  • Caputo, M., and F. Mainardi. 1971. Linear model of dissipation in anelastic solids. La Rivista Del Nuovo Cimento 1 (2):161–198. doi: 10.1007/BF02820620.
  • Chakravorty, S., S. Ghosh, and A. Sur. 2017. Thermo-viscoelastic interaction in a three-dimensional problem subjected to fractional heat conduction. Procedia Engineering 173:851–858. doi: 10.1016/j.proeng.2016.12.125.
  • Chiriţǎ, S., C. D’Apice, and V. Zampoli. 2016. The time differential three-phase-lag heat conduction model: Thermodynamic compatibility and continuous dependence. International Journal of Heat and Mass Transfer 102:226–232. doi: 10.1016/j.ijheatmasstransfer.2016.06.019.
  • Clauset, A., C. R. Shalizi, and M. Newman. 2009. Power-law distributions in empirical data. SIAM Review 51 (4):661–703. doi: 10.1137/070710111.
  • Coimbra, C. F. M. 2003. Mechanics with variable-order differential operators. Annalen Der Physik 12 (1112):692–703. doi: 10.1002/andp.200310032.
  • Cowin, S. C., and J. W. Nunziato. 1983. Linear elastic materials with voids. Journal of Elasticity 13 (2):125–147. doi: 10.1007/BF00041230.
  • Das, P., A. Kar, and M. Kanoria. 2013. Analysis of magneto-thermoelastic response in a transversely isotropic hollow cylinder under thermal shock with three-phase-lag effect. Journal of Thermal Stresses 36 (3):239–258. doi: 10.1080/01495739.2013.765180.
  • Das, P., and M. Kanoria. 2014. Study of finite thermal waves in a magneto-thermo-elastic rotating medium. Journal of Thermal Stresses 37 (4):405–428. doi: 10.1080/01495739.2013.870847.
  • Davison, M., and C. Essex. 1998. Fractional differential equations and initial value problems. The Mathematical Scientist 23 (2):108–116.
  • Diethelm, K. 2010. The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type. Berlin: Springer-Verlag.
  • El-Attar, S. I., M. H. Hendy, and M. A. Ezzat. 2019. On phase-lag Green–Naghdi theory without energy dissipation for electro-thermoelasticity including heat sources. Mechanics Based Design of Structures and Machines. doi: 10.1080/15397734.2019.1610971.
  • El-Karamany, A. S., and M. A. Ezzat. 2016. Thermoelastic diffusion with memory-dependent derivative. Journal of Thermal Stresses 39 (9):1035–1050. doi: 10.1080/01495739.2016.1192847.
  • Ezzat, M. A., M. I. A. Othman, and A. A. Smaan. 2001. State space approach to two-dimensional electromagneto-thermoelastic problem with two relaxation times. International Journal of Engineering Science 39 (12):1383–1404. doi: 10.1016/S0020-7225(00)00095-1.
  • Ezzat, M. A., M. I. A. Othman, and A. S. El-Karamany. 2002. State space approach to two-dimensional generalized thermo-viscoelasticity with two relaxation times. International Journal of Engineering Science 40 (11):1251–1274. doi: 10.1016/S0020-7225(02)00012-5.
  • Ezzat, M. A., and A. A. El-Bary. 2015. Memory-dependent derivatives theory of thermo-viscoelasticity involving two-temperature. Journal of Mechanical Science and Technology 29 (10):4273–4279. doi: 10.1007/s12206-015-0924-1.
  • Ezzat, M. A., A. S. El-Karamany, and A. A. El-Bary. 2016a. Electro-thermoelasticity theory with memory-dependent derivative heat transfer. International Journal of Engineering Science 99:22–38. doi: 10.1016/j.ijengsci.2015.10.011.
  • Ezzat, M. A., A. S. El-Karamany, and A. A. El-Bary. 2016b. Generalized thermoelasticity with memory-dependent derivatives involving two temperatures. Mechanics of Advanced Materials and Structures 23 (5):545–553. doi: 10.1080/15376494.2015.1007189.
  • Ezzat, M. A., A. S. El-Karamany, and A. A. El-Bary. 2016c. Modeling of memory-dependent derivative in generalized thermoelasticity. The European Physical Journal Plus 131 (10):372. doi: 10.1140/epjp/i2016-16372-3.
  • Ezzat, Magdy A., Ahmed S. El-Karamany, and Alaa A. El-Bary. 2017. On dual-phase-lag thermoelasticity theory with memory-dependent derivative. Mechanics of Advanced Materials and Structures 24 (11):908–916. doi: 10.1080/15376494.2016.1196793.
  • Halsted, D. J., and D. E. Brown. 1972. Zakian’s technique for inverting Laplace transforms. The Chemical Engineering Journal 3:312–313.
  • Iesan, D. 1986. A theory of thermoelastic materials with voids. Acta Mechanica 60:67–89. doi: 10.1007/BF01302942.
  • Iesan, D. 2004. Thermoelastic models of Continua. Boston, MA: Kluwer Academic Publishers.
  • Iesan, D. 2011. On a theory of thermoviscoelastic materials with voids. Journal of Elasticity 104:369–384. doi: 10.1007/s10659-010-9300-7.
  • Karmakar, R., A. Sur, and M. Kanoria. 2016. Generalized thermoelastic problem of an infinite body with a spherical cavity under dual-phase-lags. Journal of Applied Mechanics and Technical Physics 57 (4):652–665. doi: 10.1134/S002189441604009X.
  • Li, C. 2017. Nonlocal Thermo-Electro-Mechanical coupling vibrations of axially moving piezoelectric nanobeams. Mechanics Based Design of Structures and Machines 45 (4):463–478. doi: 10.1080/15397734.2016.1242079.
  • Liao, H. 2016. Stability analysis of duffing oscillator with time delayed and/or fractional derivatives. Mechanics Based Design of Structures and Machines 44 (4):283–305. doi: 10.1080/15397734.2015.1056882.
  • Liouville, J. 1832. Sur le calcul des differentielles ê indices quelconques. Journal de l'École polytechnique 13:71. (in French)
  • Lord, H., and Y. Shulman. 1967. A generalized dynamic theory of Thermoelasticity. Journal of the Mechanics and Physics of Solids 15 (5):299–309. doi: 10.1016/0022-5096(67)90024-5.
  • Mondal, S., A. Sur, and M. Kanoria. 2019a. Transient response in a piezoelastic due to the influence of magnetic field with memory dependent derivative. Acta Mechanica. doi: 10.1007/s00707-019-02380-4.
  • Mondal, S., A. Sur, and M. Kanoria. 2019b. A memory response in the vibration of a microscale beam induced by laser pulse. Journal of Thermal Stresses 1. doi: 10.1080/01495739.2019.1629854.
  • Mondal, S., A. Sur, and M. Kanoria. 2019c. Magneto-thermoelastic interaction in a reinforced medium with cylindrical cavity in the context of Caputo Fabrizio heat transport law. Acta Mechanica. doi: 10.1007/s00707-019-02498-5.
  • Nunziato, J. W., and S .C. Cowin. 1979. A nonlinear theory of elastic material with voids. Archive for Rational Mechanics and Analysis 72 (2):175–201. doi: 10.1007/BF00249363.
  • Othman, M. I. A., and E. E. M. Eraki. 2017. Generalized magneto-thermoelastic half-space with diffusion under initial stress using three-phase-lag model. Mechanics Based Design of Structures and Machines 45 (2):145–159. doi: 10.1080/15397734.2016.1152193.
  • Pareto, V. 1964. Cours d’économie politique, vol. 1. Geneva, Switzerland: Librairie Droz.
  • Passarella, F. 1996. Some results in micropolar thermoelasticity. Mechanics Research Communications 23 (4):349–357. doi: 10.1016/0093-6413(96)00032-8.
  • Passarella, F., V. Tibullo, and V. Zampoli. 2011. On the heat-flux dependent thermoelasticity for micropolar porous media. Journal of Thermal Stresses 4:778–794. doi: 10.1080/01495739.2011.564041.
  • Purkait, P., A. Sur, and M. Kanoria. 2017. Thermoelastic interaction in a two dimensional infinite space due to memory dependent heat transfer. International Journal of Advances in Applied Mathematics and Mechanics 5 (1):28–39.
  • Purkait, P., A. Sur, and M. Kanoria. 2019. Elasto-thermodiffusive response in a spherical shell subjected to memory-dependent heat transfer. Waves in Random and Complex Media. doi: 10.1080/17455030.2019.1599464.
  • Quintanilla, R., and R. Racke. 2008. A note on stability in three-phase-lag heat conduction. International Journal of Heat and Mass Transfer 51 (1–2):24–29. doi: 10.1016/j.ijheatmasstransfer.2007.04.045.
  • Roy Choudhuri, S. K. 2007. On a thermoelastic three-phase-lag model. Journal of Thermal Stresses 30 (3):231–238. doi: 10.1080/01495730601130919.
  • Sur, A., and M. Kanoria. 2012. Fractional order two-temperature thermoelasticity with finite wave speed. Acta Mechanica 223 (12):2685–2701. doi: 10.1007/s00707-012-0736-7.
  • Sur, A., and M. Kanoria. 2014a. Thermoelastic interaction in a viscoelastic functionally graded half-space under three phase lag model. European Journal of Computational Mechanics 23 (5-6):179–198. doi: 10.1080/17797179.2014.978143.
  • Sur, A., and M. Kanoria. 2014b. Finite thermal wave propagation in a half-space due to variable thermal loading. Applications and Applied Mathematics 9 (1):94–120.
  • Sur, A., and M. Kanoria. 2014c. Fractional order generalized thermoelastic functionally graded solid with variable material properties. Journal of Solid Mechanics 6:54–69.
  • Sur, A., and M. Kanoria. 2015a. Thermoelastic interaction in a functionally graded half-space subjected to a Mode-I crack. International Journal of Advances in Applied Mathematics and Mechanics 3 (2):33–44.
  • Sur, A., and M. Kanoria. 2015b. Fibre-reinforced magneto-thermoelastic rotating medium with fractional heat conduction. Procedia Engineering 127:605–612. doi: 10.1016/j.proeng.2015.11.351.
  • Sur, A., and M. Kanoria. 2017a. Three dimensional thermoelastic problem under two-temperature theory. International Journal of Computational Methods 14 (3):1750030. doi: 10.1142/S021987621750030X,1750030-(1-17).
  • Sur, A., and M. Kanoria. 2017b. Modeling Of fibre-reinforced magneto-thermoelastic plate with heat sources. Procedia Engineering 173:875–882. doi: 10.1016/j.proeng.2016.12.131.
  • Sur, A., and M. Kanoria. 2017c. Modeling of memory-dependent derivative in a fibre-reinforced plate. Thin-Walled Structures 126:85–93. doi: 10.1016/j.tws.2017.05.005.
  • Sur, A., and M. Kanoria. 2018. Thermoelastic interaction in a three dimensional layered sandwich structure. Mechanics of Advanced Materials and Structures 5:187–198. doi: 10.22075/MACS.2018.14201.1141.
  • Sur, A., P. Pal, and M. Kanoria. 2018. Modeling of memory-dependent derivative in a fibre-reinforced plate under gravitational effect. Journal of Thermal Stresses 41 (8):973–992. doi: 10.1080/01495739.2018.1447316.
  • Sur, A., P. Pal, S. Mondal, and M. Kanoria. 2019a. Finite element analysis in a fibre-reinforced cylinder due to memory-dependent heat transfer. Acta Mechanica 230 (5):1607–1624. doi: 10.1007/s00707-018-2357-2.
  • Sur, A., P. Paul, and M. Kanoria. 2019b. Modeling of memory-dependent derivative in a functionally graded plate. Waves in Random and Complex Media. doi: 10.1080/17455030.2019.1606962.
  • Wang, J. L., and H. F. Li. 2011. Surpassing the fractional derivative: Concept of the memory-dependent derivative. Computers & Mathematics with Applications 62 (3):1562–1567. doi: 10.1016/j.camwa.2011.04.028.
  • Yu, Y. J., W. Hu, and X. G. Tian. 2014. A novel generalized thermoelasticity model based on memory-dependent derivative. International Journal of Engineering Science 81:123–134. doi: 10.1016/j.ijengsci.2014.04.014.
  • Zampoli, V., and A. Landi. 2016. A domain of influence result about the time differential three-phase-lag thermoelastic model. Journal of Thermal Stresses 40 (1):108–120. doi: 10.1080/01495739.2016.1195242.
  • Zhao, D., and M. Luo. 2019. Representations of acting processes and memory effects: General fractional derivative and its application to theory of heat conduction with finite wave speeds. Applied Mathematics and Computation 346:531–544. doi: 10.1016/j.amc.2018.10.037.
  • Zipf, G. 1949. Human behavior and the principle of least effort: An introduction to human ecology. Reading, MA: Addison-Wesley.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.