257
Views
6
CrossRef citations to date
0
Altmetric
Articles

An improved constrained differential evolution for optimal design of steel frames with discrete variables

ORCID Icon &
Pages 697-723 | Received 22 Dec 2018, Accepted 15 Aug 2019, Published online: 30 Aug 2019

References

  • American Institute of Steel Construction (AISC). 2001. Manual of steel construction: Load resistance factor design, 3rd ed. Chicago: AISC.
  • Award, N. H., M. Z. Ali, P. N. Suganthan, J. J. Liang, and B. Y. Qu. 2017. Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective real-parameter numerical optimization. Technical Report, Nanyang Technological University, Singapore.
  • Babaei, M., and M. Mollayi. 2016. Multi-objective optimization of reinforced concrete frames using NSGA-II algorithm. Engineering Structures and Technologies 8 (4):157–64. doi:10.3846/2029882X.2016.1250230.
  • Babaei, M., and E. Sanaei. 2016. Multi-objective optimal design of braced frames using hybrid genetic and ant colony optimization. Frontiers of Structural and Civil Engineering 10 (4):472–80. doi:10.1007/s11709-016-0368-4.
  • Camp, C. V., B. J. Bichon, and S. P. Stovall. 2005. Design of steel frames using ant colony optimization. Journal of Structural Engineering 131 (3):369–79. doi:10.1061/(ASCE)0733-9445(2005)131:3(369).
  • Chen, T.Y., and H.C. Chen. 2009. Mixed–discrete structural optimization using a rank-niche evolution strategy. Engineering Optimization 41 (1):39–58. doi:10.1080/03052150802344535.
  • Csébfalvi, A. 2014. A new theoretical approach for robust truss optimization with uncertain load directions. Mechanics Based Design of Structures and Machines 42 (4):442–53. doi:10.1080/15397734.2014.880064.
  • Das, S., S. S. Mullick, and P. N. Suganthan. 2016. Recent advances in differential evolution–an updated survey. Swarm and Evolutionary Computation 27:1–30. doi:10.1016/j.swevo.2016.01.004.
  • Datta, D., and J. R. Figueira. 2013. A real–integer–discrete-coded differential evolution. Applied Soft Computing 13 (9):3884–93. doi:10.1016/j.asoc.2013.05.001.
  • Dede, T., S. Bekiroğlu, and Y. Ayvaz. 2011. Weight minimization of trusses with genetic algorithm. Applied Soft Computing 11 (2):2565–75. doi:10.1016/j.asoc.2010.10.006.
  • Degertekin, S. O. 2008. Optimum design of steel frames using harmony search algorithm. Structural and Multidisciplinary Optimization 36 (4):393–401. doi:10.1007/s00158-007-0177-4.
  • Dumonteil, P. 1992. Simple equations for effective length factors. Engineering Journal AISC 29 (3):111–5.
  • Farshchin, M., M. Maniat, C. V. Camp, and S. Pezeshk. 2018. School based optimization algorithm for design of steel frames. Engineering Structures 171:326–35. doi:10.1016/j.engstruct.2018.05.085.
  • Ho-Huu, V., T. Nguyen-Thoi, M. Nguyen-Thoi, and L. Le-Anh. 2015. An improved constrained differential evolution using discrete variables (D-ICDE) for layout optimization of truss structures. Expert Systems with Applications 42 (20):7057–69. doi:10.1016/j.eswa.2015.04.072.
  • Ho-Huu, V., T. Nguyen-Thoi, T. Truong-Khac, L. Le-Anh, and T. Vo-Duy. 2018. An improved differential evolution based on roulette wheel selection for shape and size optimization of truss structures with frequency constraints. Neural Computing and Applications 29 (1):167–85. doi:10.1007/s00521-016-2426-1.
  • Jia, G., Y. Wang, Z. Cai, and Y. Jin. 2013. An improved (μ+ λ)-constrained differential evolution for constrained optimization. Information Sciences 222:302–22. doi:10.1016/j.ins.2012.01.017.
  • Karaboga, N., and B. Cetinkaya. 2004. Performance comparison of genetic and differential evolution algorithms for digital FIR filter design. In (eds) Advances in Information Systems. ADVIS 2004. Lecture Notes in Computer Science, ed. Yakhno T, vol 3261. Berlin, Heidelberg: Springer. doi:10.1007/978-3-540-30198-1_49.
  • Kaveh, A., and T. Bakhshpoori. 2013. Optimum design of steel frames using Cuckoo Search algorithm with Lévy flights. The Structural Design of Tall and Special Buildings 22 (13):1023–36. doi:10.1002/tal.754.
  • Kaveh, A., T. Bakhshpoori, and M. Kalate-Ahani. 2013. Optimum plastic analysis of planar frames using ant colony system and charged system search algorithms. Scientia Iranica 3 (20):387–96. doi:10.1016/j.scient.2012.12.030.
  • Kaveh, A., B. Farahmand Azar, A. Hadidi, F. Rezazadeh Sorochi, and S. Talatahari. 2010. Performance-based seismic design of steel frames using ant colony optimization. Journal of Constructional Steel Research 4 (66):566–74. doi:10.1016/j.jcsr.2009.11.006.
  • Kaveh, A., M.H. Ghafari, and Y. Gholipour. 2017. Optimum seismic design of steel frames considering the connection types. Journal of Constructional Steel Research 130:79–87. doi:10.1016/j.jcsr.2016.12.002.
  • Kaveh, A., and M. Ilchi Ghazaan. 2017. Enhanced whale optimization algorithm for sizing optimization of skeletal structures. Mechanics Based Design of Structures and Machines 45 (3):345–62. doi:10.1080/15397734.2016.1213639.
  • Kaveh, A., and A. Nasrollahi. 2014. Performance-based seismic design of steel frames utilizing charged system search optimization. Applied Soft Computing 22:213–21. doi:10.1016/j.asoc.2014.05.012.
  • Kaveh, A., and S. Talatahari. 2010a. Optimum design of skeletal structures using imperialist competitive algorithm. Computers & Structures 88 (21-22):1220–9. doi:10.1016/j.compstruc.2010.06.011.
  • Kaveh, A., and P. Zakian. 2013. Optimal design of steel frames under seismic loading using two meta-heuristic algorithms. Journal of Constructional Steel Research 82:111–30. doi:10.1016/j.jcsr.2012.12.003.
  • Kaveh, A., and S. Talatahari. 2010. An improved ant colony optimization for the design of planar steel frames. Engineering Structures 32 (3):864–73. doi:10.1016/j.engstruct.2009.12.012.
  • Lampinen, J., and I. Zelinka. 1999. Mixed integer-discrete-continuous optimization by differential evolution. Part 1: the optimization method. Proceedings of MENDEL'99, 5th International Mendel Conference on Soft Computing, 71–6.
  • Liu, X., Z. Zhang, and L. Yin. 2017. A multi-objective optimization method for uncertain structures based on nonlinear interval number programming method. Mechanics Based Design of Structures and Machines 45 (1):25–42. doi:10.1080/15397734.2016.1141365.
  • Pan, Q-K., L. Wang, L. Gao, and W. D. Li. 2011. An effective hybrid discrete differential evolution algorithm for the flow shop scheduling with intermediate buffers. Information Sciences 181 (3):668–85. doi:10.1016/j.ins.2010.10.009.
  • Pezeshk, S., C. V. Camp, and D. Chen. 2000. Design of nonlinear framed structures using genetic optimization. Journal of Structural Engineering 126 (3):382–8. doi:10.1061/(ASCE)0733-9445(2000)126:3(382).
  • Sanaei, E., and M. Babaei. 2012. Topology optimization of structures using cellular automata with constant strain triangles. International Journal of Civil Engineering 10 (3):179–88.
  • Sanaei, E., and M. Babaei. 2011. Cellular Automata in Topology Optimization of Continuum Structures. International Journal of Engineering, Science and Technology 3 (4):27–41. doi:10.4314/ijest.v3i4.68538.
  • Storn, R., and K. Price. 1997. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11 (4):341–59. doi:10.1023/A:1008202821328.
  • Tanabe, R., and A. Fukunaga. 2014. Reevaluating exponential crossover in differential evolution. Proceedings of the Parallel Problem Solving from Nature- PPSN XIII. 201–10. doi:10.1007/978-3-319-10762-2_20.
  • Wang, Y., and Z. Cai. 2011. Constrained evolutionary optimization by means of (μ+ λ)-differential evolution and improved adaptive trade-off model. Evolutionary Computation 19 (2):249–85. doi:10.1162/EVCOa00024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.