264
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Analytical treatment for vibration analysis of partially cracked orthotropic and FGM submerged cylindrical shell with consideration of fluid-structure interaction

, &
Pages 463-486 | Received 30 Mar 2019, Accepted 01 Nov 2019, Published online: 18 Nov 2019

References

  • Chen, Yuehua, Guoyong Jin, and Zhigang Liu. 2013. Free vibration analysis of circular cylindrical shell with non-uniform elastic boundary constraints. International Journal of Mechanical Sciences 74:120–32. doi:10.1016/j.ijmecsci.2013.05.006.
  • Chung, H. 1975. Vibrations of circular cylindrical shells. Journal of Sound and Vibration 52 (4):497–5. http://www.osti.gov/energycitations/servlets/purl/4164813-IC28Ma/.
  • Dastjerdi, Shahriar, and Yaghoub Tadi Beni. 2019. A novel approach for nonlinear bending response of macro- and nanoplates with irregular variable thickness under nonuniform loading in thermal environment. Mechanics Based Design of Structures and Machines 47 (4):453–26. doi:10.1080/15397734.2018.1557529.
  • Fayuan, Wei, Li Shiqi, Huang Yuying, and Zhong Yifang. 2001. Vibration analysis of segmented shells coupled with liquid using a mixed FS-BE method. Mechanics of Structures and Machines 29 (3):373–89. doi:10.1081/SME-100105656.
  • Gonçalves, P. B., and R. C. Batista. 1988. Non-linear vibration analysis of fluid-filled cylindrical shell. Journal of Sound and Vibration 127 (1):133–43. doi:10.1016/0022-460X(88)90354-9.
  • Gupta, Ankur, N. K. Jain, R. Salhotra, and P. V. Joshi. 2015. Effect of microstructure on vibration characteristics of partially cracked rectangular plates based on a modified couple stress theory. International Journal of Mechanical Sciences 100:269–82. doi:10.1016/j.ijmecsci.2015.07.004.
  • Gupta, Ankur, N. K. Jain, R. Salhotra, A. M. Rawani, and P. V. Joshi. 2016. Effect of fibre orientation on non-linear vibration of partially cracked thin rectangular orthotropic micro plate: an analytical approach. International Journal of Mechanical Sciences 105:378–97. doi:10.1016/j.ijmecsci.2015.11.020.
  • Ip, Kim Ho, and Ping Cheung Tse. 2002. Locating damage in circular cylindrical composite shells based on frequency sensitivities and mode shapes. European Journal of Mechanics A/Solids 21 (4):615–28. doi:10.1016/S0997-7538(02)01228-7.
  • Jain, R. K. 1974. Vibration of fluid-filled orthotropic cylindrical shells. Journal of Sound and Vibration 37 (3):379–88. doi:10.1016/S0022-460X(74)80253-1.
  • Javidruzi, M., A. Vafai, J. F. Chen, and J. C. Chilton. 2004. Vibration, buckling and dynamic stability of cracked cylindrical shells. Thin-Walled Structures 42 (1):79–99. doi:10.1016/S0263-8231(03)00125-3.
  • Joshi, P. V., A. Gupta, N. K. Jain, R. Salhotra, A. M. Rawani, and G. D. Ramtekkar. 2017. Effect of Thermal environment on free vibration and buckling of partially cracked isotropic and FGM micro plates based on a non classical Kirchhoff’s plate theory: an analytical approach. International Journal of Mechanical Sciences 131-132:155–70. doi:10.1016/j.ijmecsci.2017.06.044.
  • Joshi, P. V., N. K. Jain, and G. D. Ramtekkar. 2014. Analytical modeling and vibration analysis of internally cracked rectangular plates. Journal of Sound and Vibration 333 (22):5851–64. doi:10.1016/j.jsv.2014.06.028.
  • Joshi, P. V., N. K. Jain, and G. D. Ramtekkar. 2015. Effect of thermal environment on free vibration of cracked rectangular plate: an analytical approach. Thin-Walled Structures 91:38–49. doi:10.1016/j.tws.2015.02.004.
  • Kandasamy, Selvakumar, and Anand V. Singh. 2006. Free vibration analysis of skewed open circular cylindrical shells. Journal of Sound and Vibration 290 (3-5):1100–18. doi:10.1016/j.jsv.2005.05.010.
  • Khalili, S. M. R., A. Davar, and K. Malekzadeh Fard. 2012. Free vibration analysis of homogeneous isotropic circular cylindrical shells based on a new three-dimensional refined higher-order theory. International Journal of Mechanical Sciences 56 (1):1–25. doi:10.1016/j.ijmecsci.2011.11.002.
  • Kim, Heung Soo, Jung Woo Sohn, and Seung Bok Choi. 2011. Vibration control of a cylindrical shell structure using macro fiber composite actuators. Mechanics Based Design of Structures and Machines 39 (4):491–506. doi:10.1080/15397734.2011.577691.
  • Kumar, V., M. D. German, and B. L. Schumacher. 1985. Analysis of elastic surface cracks in cylinders using the line-spring model and shell finite element method. Journal of Pressure Vessel Technology 107 (4):403–11. doi:10.1115/1.3264474.
  • Luo, Zhong, Yun Peng Zhu, Xue Yan Zhao, and De You Wang. 2015. High-order vibrations dynamic scaling laws of distorted scaled models of thin-walled short cylindrical shells. Mechanics Based Design of Structures and Machines 43 (4):514–34. doi:10.1080/15397734.2015.1044610.
  • Mahabaliraja, D. E. Boyd, and R. L. Brugh. 1977. Vibrations of stiffened cylinders with cutouts. Journal of Sound and Vibration 52 (1):65–78. doi:10.1016/0022-460X(77)90389-3.
  • Matsunaga, Hiroyuki. 2009. Free vibration and stability of functionally graded circular cylindrical shells according to a 2D higher-order deformation theory. Composite Structures 88 (4):519–31. doi:10.1016/j.compstruct.2008.05.019.
  • Moazzez, K., H. Saeidi Googarchin, and S. M. H. Sharifi. 2018. Natural frequency analysis of a cylindrical shell containing a variably oriented surface crack utilizing line-spring model. Thin-Walled Structures 125:63–75. doi:10.1016/j.tws.2018.01.009.
  • Montre, Polytechnique De. 1997. Vibration analysis of anisotropic open cylindrical shells subjected to a flowing fluid. Journal of Fluids and Structures 11:111–34.
  • Naeem, Muhammad Nawaz, Madiha Gamkhar, Shahid Hussain Arshad, and Abdul Ghafar Shah. 2013. Vibration analysis of submerged thin FGM cylindrical shells vibration analysis of submerged thin FGM cylindrical shells. Journal of Mechanical Science and Technology 27 (3):649–56. doi:10.1007/s12206-013-0119-6.
  • Najafov, A. M., A. H. Sofiyev, and N. Kuruoglu. 2013. Torsional vibration and stability of functionally graded orthotropic cylindrical shells on elastic foundations. Meccanica 48 (4):829–40. doi:10.1007/s11012-012-9636-0.
  • Nikpour, Kamyar. 1990. Diagnosis of axisymmetric cracks in orthotropic cylindrical shells by vibration measurement. Composites Science and Technology 39 (1):45–61. doi:10.1016/0266-3538(90)90032-Z.
  • Patel, B. P., S. S. Gupta, M. S. Loknath, and C. P. Kadu. 2005. Free vibration analysis of functionally graded elliptical cylindrical shells using higher-order theory. Composite Structures 69 (3):259–70. doi:10.1016/j.compstruct.2004.07.002.
  • Poore, A. L., A. Barut, and E. Madenci. 2008. Free vibration of laminated cylindrical shells with a circular cutout. Journal of Sound and Vibration 312 (1-2):55–73. doi:10.1016/j.jsv.2007.10.025.
  • Pradhan, S. C., C. T. Loy, K. Y. Lam, and J. N. Reddy. 2000. Vibration characteristics of functionally graded cylindrical shells under various boundary conditions. Applied Acoustics 61 (1):111–29. doi:10.1016/S0003-682X(99)00063-8.
  • Qin, Zhaoye, Fulei Chu, and Jean Zu. 2017. Free vibrations of cylindrical shells with arbitrary boundary conditions: a comparison study. International Journal of Mechanical Sciences 133:91–9. doi:10.1016/j.ijmecsci.2017.08.012.
  • Rao, Singiresu S. 2007. Vibration of continuous systems. Hoboken, NJ: John Wiley and Sons.
  • Rice, J. R., and N. Levy. 1972. The Part-Through Surface Crack in an Elastic Plate. Journal of Applied Mechanics 39 (1):185. doi:10.1115/1.3422609.
  • Roytman, A., and O. Titova. 2002. An analytical approach to determining the dynamic characteristics of a cylindrical shell with closing cracks. Journal of Sound and Vibration 254 (2):379–86. doi:10.1006/jsvi.2002.5005.
  • Saeidi, Hamed, and Kasra Moazzez. 2019. Analytical solution for free vibration of cracked orthotropic cylindrical shells. International Journal of Mechanical Sciences 153–154:254–70. doi:10.1016/j.ijmecsci.2019.02.004.
  • Sarker, L., Y. Xiang, X. Q. Zhu, and Y. Y. Zhang. 2015. Damage detection of circular cylindrical shells by Ritz method and wavelet analysis. Electronic Journal of Structural Engineering 14 (1):62–74.
  • Sofiyev, A. H. 2016. Nonlinear free vibration of shear deformable orthotropic functionally graded cylindrical shells. Composite Structures 142:35–44. doi:10.1016/j.compstruct.2016.01.066.
  • Sofiyev, A. H., D. Hui, A. A. Valiyev, F. Kadioglu, S. Turkaslan, G. Q. Yuan, V. Kalpakci, and A. Özdemir. 2016. Effects of shear stresses and rotary inertia on the stability and vibration of sandwich cylindrical shells with FGM core surrounded by elastic medium. Mechanics Based Design of Structures and Machines 44 (4):384–404. doi:10.1080/15397734.2015.1083870.
  • Sofiyev, A. H., Zihni Zerin, Bilender P. Allahverdiev, and David Hui. 2017. The dynamic instability of FG orthotropic conical shells within the SDT. Steel and Composite Structures 25 (5):581–91. doi:10.12989/scs.2017.25.5.581.
  • Soldatos, K. P., and V. P. Hadjigeorgiou. 1990. Three-dimensional problem solution shells of the free vibration isotropic of homogeneous cylindrical shells and panels. Journal of Sound and Vibration 137 (3):369–84. doi:10.1016/0022-460X(90)90805-A.
  • Soni, S., N. K. Jain, and P. V. Joshi. 2017. Analytical modeling for nonlinear vibration analysis of partially cracked thin magneto-electro-elastic plate coupled with fluid. Nonlinear Dynamics 90 (1):137–70. doi:10.1007/s11071-017-3652-5.
  • Soni, S., N. K. Jain, and P. V. Joshi. 2018. Vibration analysis of partially cracked plate submerged in fluid. Journal of Sound and Vibration 412:28–57. doi:10.1016/j.jsv.2017.09.016.
  • Wang, C., and J. C. S. Lai. 2000. Prediction of natural frequencies of finite length circular cylindrical shells. Applied Acoustics 59 (4):385–400. doi:10.1016/S0003-682X(99)00039-0.
  • Weiqiu, C., H. J. Ding, Y. M. Guo, and Q. D. Yan. 1997. Free vibrations of fluid-filled orthotropic cylindrical shells. Journal of Engineering Mechanics 123 (11):1130–3. doi:10.1061/(ASCE)0733-9399(1997)123:11(1130).
  • Xin, Jianqiang, Jianjun Wang, Jianyao Yao, and Qinkai Han. 2011. Vibration, buckling and dynamic stability of a cracked cylindrical shell with time-varying rotating speed. Mechanics Based Design of Structures and Machines 39 (4):461–90. doi:10.1080/15397734.2011.569301.
  • Zhang, X. M. 2002. Frequency analysis of submerged cylindrical shells with the wave propagation approach. International Journal of Mechanical Sciences 44 (7):1259–73. doi:10.1016/S0020-7403(02)00059-0.
  • Zhi-Yuan, Cao, and Wang Hua-Ning. 2007. Free Vibration of FGM cylindrical shells with holes under various boundary conditions. Journal of Sound and Vibration 306 (1–2):227–37. doi:10.1016/j.jsv.2007.05.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.