186
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Stability analysis of an axially moving nanocomposite circular cylindrical shell with time-dependent velocity in thermal environments

, ORCID Icon &
Pages 659-688 | Received 30 Jun 2019, Accepted 23 Nov 2019, Published online: 08 Dec 2019

References

  • Alijani, F., and M. Amabili. 2014. Non-linear vibrations of shells: A literature review from 2003 to 2013. International Journal of Non-Linear Mechanics 58:233–57. doi:10.1016/j.ijnonlinmec.2013.09.012.
  • Amabili, M. 2008. Nonlinear vibrations and stability of shells and plates. Cambridge: Cambridge University Press.
  • Amabili, M. 2011. Nonlinear vibrations of laminated circular cylindrical shells: Comparison of different shell theories. Composite Structures 94 (1):207–20. doi:10.1016/j.compstruct.2011.07.001.
  • Amabili, M. 2012. Internal resonances in non-linear vibrations of a laminated circular cylindrical shell. Nonlinear Dynamics 69 (3):755–70. doi:10.1007/s11071-011-0302-1.
  • Ansari, M. I., and A. Kumar. 2019. Bending analysis of functionally graded CNT reinforced doubly curved singly ruled truncated rhombic cone. Mechanics Based Design of Structures and Machines 47 (1):67–86. doi:10.1080/15397734.2018.1519635.
  • Ansari, M. I., A. Kumar, S. Fic, and D. Barnat-Hunek. 2018. Flexural and free vibration analysis of CNT-reinforced functionally graded plate. Materials 11 (12):2387–405. doi:10.3390/ma11122387.
  • Ansari, R., J. Torabi, and F. Shojaei. 2018. Free vibration analysis of embedded functionally graded carbon nanotube-reinforced composite conical/cylindrical shells and annular plates using a numerical approach. Journal of Vibration and Control 24 (6):1123–4. doi:10.1177/1077546316659172.
  • Banichuk, N. V., and S. Y. Ivanova. 2018. Mathematical modelling of the axially moving panels subjected to thermomechanical actions. Mechanics Based Design of Structures and Machines 46 (1):101–9. doi:10.1080/15397734.2017.1289472.
  • Chaubey, A. K., A. Kumar, and A. Chakrabarti. 2018. Novel shear deformation model for moderately thick and deep laminated composite conoidal shell. Mechanics Based Design of Structures and Machines 46 (5):650–68. doi:10.1080/15397734.2017.1422433.
  • Chaubey, A. K., C. Prakash, and A. Kumar. 2018. Biaxial and shear buckling of laminated composite elliptic paraboloids with cutouts and concentrated mass. Mechanics Research Communications 94:80–7. doi:10.1016/j.mechrescom.2018.09.008.
  • Daneshpayeh, S., F. Ashenai Ghasemi, I. Ghasemi, and M. Ayaz. 2016. Predicting of mechanical properties of PP/LLDPE/TiO2 nano-composites by response surface methodology. Composites Part B: Engineering 84:109–20. doi:10.1016/j.compositesb.2015.08.075.
  • Dehrouyeh-Semnani, A. M., M. Dehrouyeh, H. Zafari-Koloukhi, and M. Ghamami. 2015. Size-dependent frequency and stability characteristics of axially moving microbeams based on modified couple stress theory. International Journal of Engineering Science 97:98–112. doi:10.1016/j.ijengsci.2015.09.003.
  • Eshmatov, B. K. 2007. Nonlinear vibrations of viscoelastic cylindrical shells taking into account shear deformation and rotatory inertia. Nonlinear Dynamics 50 (1-2):353–61. doi:10.1007/s11071-006-9163-4.
  • Faleh, N. M., R. A. Ahmed, and R. M. Fenjan. 2018. On vibrations of porous FG nanoshells. International Journal of Engineering Science 133:1–14. doi:10.1016/j.ijengsci.2018.08.007.
  • Ghayesh, M. H., and M. Amabili. 2013. Parametric stability and bifurcations of axially moving viscoelastic beams with time-dependent axial speed. Mechanics Based Design of Structures and Machines 41 (3):359–81. doi:10.1080/15397734.2013.771093.
  • Ghayesh, M. H., M. Amabili, and M. P. Païdoussis. 2013. Nonlinear dynamics of axially moving plates. Journal of Sound and Vibration 332 (2):391–406. doi:10.1016/j.jsv.2012.08.013.
  • Hatami, S., M. Azhari, and M. Saadatpour. 2007. Free vibration of moving laminated composite plates. Composite Structures 80 (4):609–20. doi:10.1016/j.compstruct.2006.07.009.
  • Iijima, S. 1991. Helical microtubules of graphitic carbon. Nature 354 (6348):56–8. doi:10.1038/354056a0.
  • Li, C. 2017. Nonlocal thermo-electro-mechanical coupling vibrations of axially moving piezoelectric nanobeams. Mechanics Based Design of Structures and Machines 45 (4):463–78. doi:10.1080/15397734.2016.1242079.
  • Li, C., J. Liu, M. Cheng, and X. Fan. 2017. Nonlocal vibrations and stabilities in parametric resonance of axially moving viscoelastic piezoelectric nanoplate subjected to thermo-electro-mechanical forces. Composites Part B: Engineering 116:153–69. doi:10.1016/j.compositesb.2017.01.071.
  • Li, Y., Y. Dong, Y. Qin, and H. Lv. 2018. Nonlinear forced vibration and stability of an axially moving viscoelastic sandwich beam. International Journal of Mechanical Sciences 138-139:131–45. Vols. doi:10.1016/j.ijmecsci.2018.01.041.
  • Liessa, A. W. 1973. Vibration of shells. Washington, DC: NASA SP-288.
  • Liu, J., C. Li, X. Fan, and L. Tong. 2017. Transverse free vibration and stability of axially moving nanoplates based on nonlocal elasticity theory. Applied Mathematical Modelling 45:65–84. doi:10.1016/j.apm.2016.12.006.
  • Liu, T., W. Zhang, and J. F. Wang. 2017. Nonlinear dynamics of composite laminated circular cylindrical shell clamped along a generatrix and with membranes at both ends. Nonlinear Dynamics 90 (2):1393–25. doi:10.1007/s11071-017-3734-4.
  • Loy, C., K. Lam, and J. Reddy. 1999. Vibration of functionally graded cylindrical shells. International Journal of Mechanical Sciences 41 (3):309–24. doi:10.1016/S0020-7403(98)00054-X.
  • Lv, H.-W., L. Li, and Y.-H. Li. 2018. Non-linearly parametric resonances of an axially moving viscoelastic sandwich beam with time-dependent velocity. Applied Mathematical Modelling 53:83–105. doi:10.1016/j.apm.2017.05.048.
  • Ni, Q., Y. Luo, M. Li, and H. Yan. 2017. Natural frequency and stability analysis of a pipe conveying fluid with axially moving supports immersed in fluid. Journal of Sound and Vibration 403:173–89. doi:10.1016/j.jsv.2017.05.023.
  • Ninh, D. G., and D. H. Bich. 2018. Characteristics of nonlinear vibration of nanocomposite cylindrical shells with piezoelectric actuators under thermo-mechanical loads. Aerospace Science and Technology 77:595–609. doi:10.1016/j.ast.2018.04.008.
  • Ninh, D. G., and N. D. Tien. 2019. Investigation for electro-thermo-mechanical vibration of nanocomposite cylindrical shells with an internal fluid flow. Aerospace Science and Technology 92:501–19. doi:10.1016/j.ast.2019.06.023.
  • Oz, H., and M. Pakdemirli. 1999. Vibrations of an axially moving beam with time-dependent velocity. Journal of Sound and Vibration 227:239–57.
  • Özhan, B. B. 2014. Vibration and stability analysis of axially moving beams with variable speed and axial force. International Journal of Structural Stability and Dynamics 14 (06):1450015–73. doi:10.1142/S0219455414500151.
  • Pellicano, F., M. Amabili, and M.P. Paı¨Doussis. 2002. Effect of the geometry on the non-linear vibration of circular cylindrical shells. International Journal of Non-Linear Mechanics 37 (7):1181–98. doi:10.1016/S0020-7462(01)00139-1.
  • Pouresmaeeli, S., S.A. Fazelzadeh, E. Ghavanloo, and P. Marzocca. 2018. Uncertainty propagation in vibrational characteristics of functionally graded carbon nanotube-reinforced composite shell panels. International Journal of Mechanical Sciences 149:549–58. doi:10.1016/j.ijmecsci.2017.05.049.
  • Pourkiaee, S. M., S. E. Khadem, and M. Shahgholi. 2016. Parametric resonances of an electrically actuated parametric resonances of an electrically actuated effects and intermolecular interactions. Nonlinear Dynamics 84 (4):1943–60. doi:10.1007/s11071-016-2618-3.
  • Pourkiaee, S. M., S. E. Khadem, and M. Shahgholi. 2017. Nonlinear vibration and stability analysis nonlinear vibration and stability analysis nanobeam considering surface effects and intermolecular interactions. Journal of Vibration and Control 23:1873–89. doi:10.1177/1077546315603270.
  • Pradhan, S., C. Loy, K. Lam, and J. Reddy. 2000. Vibration characteristics of functionally graded cylindrical shells under various boundary conditions. Applied Acoustics 61 (1):111–29. doi:10.1016/S0003-682X(99)00063-8.
  • Qatu, M. S., and A. W. Leissa. 1993. Vibration of shallow shells with two adjacent edges clamped and the others free. Mechanics of Structures and Machines 21 (3):285–301. doi:10.1080/08905459308905190.
  • Qatu, M. S., R. W. Sullivan, and W. Wang. 2010. Recent research advances on the dynamic analysis of composite shells: 2000–2009. Composite Structures 93 (1):14–31. doi:10.1016/j.compstruct.2010.05.014.
  • Qin, Z., X. Pang, B. Safaei, and F. Chu. 2019. Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions. Composite Structures 220:847–60. doi:10.1016/j.compstruct.2019.04.046.
  • Saksa, T., and J. Jeronen. 2015. Estimates for divergence velocities of axially moving orthotropic thin plates. Mechanics Based Design of Structures and Machines 43 (3):294–313. doi:10.1080/15397734.2014.987788.
  • Shafiei, N., and G.-L. She. 2018. On vibration of functionally graded nano-tubes in the thermal environment. International Journal of Engineering Science 133:84–98. doi:10.1016/j.ijengsci.2018.08.004.
  • She, G.-L., Y.-R. Ren, F.-G. Yuan, and W.-S. Xiao. 2018. On vibrations of porous nanotubes. International Journal of Engineering Science 125:23–35. doi:10.1016/j.ijengsci.2017.12.009.
  • Shen, H.-S. 2009. Nonlinear bending of functionally graded carbon nanotube-reinforced nonlinear bending of functionally graded carbon nanotube-reinforced. Composite Structures 91 (1):9–19. doi:10.1016/j.compstruct.2009.04.026.
  • Shen, H.-S., and Y. Xiang. 2012. Nonlinear vibration of nanotube-reinforced composite cylindrical shells in nonlinear vibration of nanotube-reinforced composite cylindrical shells in. Computer Methods in Applied Mechanics and Engineering 213-216:196–205. doi:10.1016/j.cma.2011.11.025.
  • Sofiyev, A. H., D. Hui, A. A. Valiyev, F. Kadioglu, S. Turkaslan, G. Q. Yuan, V. Kalpakci, and A. Özdemir. 2016. Effects of shear stresses and rotary inertia on the stability and vibration of sandwich cylindrical shells with FGM core surrounded by elastic medium. Mechanics Based Design of Structures and Machines 44 (4):384–404. doi:10.1080/15397734.2015.1083870.
  • Wang, A., H. Chen, Y. Hao, and W. Zhang. 2018. Vibration and bending behavior of functionally graded nanocomposite doubly-curved shallow shells reinforced by graphene nanoplatelets. Results in Physics 9:550–9. doi:10.1016/j.rinp.2018.02.062.
  • Wang, J., H. Shen, B. Zhang, and J. Liu. 2018. Studies on the dynamic stability of an axially moving nanobeam based on the nonlocal strain gradient theory. Modern Physics Letters B 32 (16): 1850167. doi:10.1142/S0217984918501671.
  • Wang, Y. Q., L. Liang, and X. H. Guo. 2013. Internal resonance of axially moving laminated circular cylindrical shells. Journal of Sound and Vibration 332 (24):6434–50. doi:10.1016/j.jsv.2013.07.007.
  • Xin, J., J. Wang, J. Yao, and Q. Han. 2011. Vibration, buckling and dynamic stability of a cracked cylindrical shell with time-varying rotating speed. Mechanics Based Design of Structures and Machines 39 (4):461–90. doi:10.1080/15397734.2011.569301.
  • Xing, Y., B. Liu, and T. Xu. 2013. Exact solutions for free vibration of circular cylindrical shells with classical boundary conditions. International Journal of Mechanical Sciences 75:178–88. doi:10.1016/j.ijmecsci.2013.06.005.
  • Yang, X.-D., W. Zhang, L.-Q. Chen, and M.-H. Yao. 2012. Dynamical analysis of axially moving plate by finite difference method. Nonlinear Dynamics 67 (2):997–1006. doi:10.1007/s11071-011-0042-2.
  • Yin-Feng, Z., and W. Zhong-Min. 2008. Vibrations of axially moving viscoelastic plate with parabolically varying thickness. Journal of Sound and Vibration 316 (1-5):198–210. doi:10.1016/j.jsv.2008.02.040.
  • Yin-Feng, Z., and W. Zhong-Min. 2019. Dynamic instability of axially moving viscoelastic plate. European Journal of Mechanics/A Solids 73:1–10.
  • Zghal, S., A. Frikha, and F. Dammak. 2017. Static analysis of functionally graded carbon nanotube-reinforced plate and shell structures. Composite Structures 176:1107–23. doi:10.1016/j.compstruct.2017.06.015.
  • Zghal, S., A. Frikha, and F. Dammak. 2018. Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures. Applied Mathematical Modelling 53:132–55. doi:10.1016/j.apm.2017.08.021.
  • Zhen, Y. 2016. Vibration and instability analysis of double-carbon nanotubes system conveying fluid. American Society of Civil Engineers 6:1–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.