290
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Free and forced vibration of sandwich plates with electrorheological core and functionally graded face layers

&
Pages 689-706 | Received 29 Sep 2019, Accepted 24 Nov 2019, Published online: 04 Dec 2019

References

  • Abediokhchi, J., M. Shakouri, and M. A. Kouchakzadeh. 2013. Bending analysis of moderately thick functionally graded conical panels with various boundary conditions using GDQ method. Composite Structures 103:68–74. doi: 10.1016/j.compstruct.2013.03.022.
  • Aguib, S., A. Nour, H. Zahloul, G. Bossis, Y. Chevalier, and P. Lançon. 2014. Dynamic behavior analysis of a magnetorheological elastomer sandwich plate. International Journal of Mechanical Sciences 87:118–36. doi: 10.1016/j.ijmecsci.2014.05.014.
  • Alavi, S. H., and H. Eipakchi. 2019. Analytical method for free-damped vibration analysis of viscoelastic shear deformable annular plates made of functionally graded materials. Mechanics Based Design of Structures and Machines 47 (4):497–519. doi: 10.1080/15397734.2019.1565499.
  • Alibeigloo, A., and W. Chen. 2010. Elasticity solution for an FGM cylindrical panel integrated with piezoelectric layers. European Journal of Mechanics - A/Solids 29 (4):714–23. doi: 10.1016/j.euromechsol.2010.02.011.
  • Allahverdizadeh, A., I. Eshraghi, M. Mahjoob, and N. Nasrollahzadeh. 2014. Nonlinear vibration analysis of FGER sandwich beams. International Journal of Mechanical Sciences 78:167–76. doi: 10.1016/j.ijmecsci.2013.11.012.
  • Asgari, M., and M. A. Kouchakzadeh. 2016. Aeroelastic characteristics of magneto-rheological fluid sandwich beams in supersonic airflow. Composite Structures 143:93–102. doi: 10.1016/j.compstruct.2016.02.015.
  • Baferani, A. H., A. Saidi, and E. Jomehzadeh. 2011. An exact solution for free vibration of thin functionally graded rectangular plates. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 225:526–36. doi: 10.1243/09544062JMES2171.
  • Berg, C., L. Evans, and P. Kermode. 1996. Composite structure analysis of a hollow cantilever beam filled with electro-rheological fluid. Journal of Intelligent Material Systems and Structures 7 (5):494–502. doi: 10.1177/1045389X9600700504.
  • Cho, K.-D., I. Lee, and J.-H. Han. 2005. Dynamic characteristics of ER fluid-filled composite plate using multielectrode configuration. Journal of Intelligent Material Systems and Structures 16 (5):411–9. doi: 10.1177/1045389X05051002.
  • Choi, S.-B., Y.-K. Park, and C.-C. Cheong. 1996. Active vibration control of intelligent composite laminate structures incorporating an electro-rheological fluid. Journal of Intelligent Material Systems and Structures 7 (4):411–9. doi: 10.1177/1045389X9600700405.
  • Choi, W., Y. Xiong, and R. Shenoi. 2010. Vibration characteristics of sandwich beams with steel skins and magnetorheological elastomer cores. Advances in Structural Engineering 13 (5):837–47. doi: 10.1260/1369-4332.13.5.837.
  • Deng, H., and X. Gong. 2007. Adaptive tuned vibration absorber based on magnetorheological elastomer. Journal of Intelligent Material Systems and Structures 18 (12):1205–10. doi: 10.1177/1045389X07083128.
  • Dwivedy, S., and M. Srinivas. 2011. Dynamic instability of MRE embedded soft cored sandwich beam with non-conductive skins. Shock and Vibration 18 (6):759–88. doi: 10.1155/2011/464610.
  • Dyniewicz, B., J. M. Bajkowski, and C. I. Bajer. 2015. Semi-active control of a sandwich beam partially filled with magnetorheological elastomer. Mechanical Systems and Signal Processing 60:695–705. doi: 10.1016/j.ymssp.2015.01.032.
  • Eshaghi, M., R. Sedaghati, and S. Rakheja. 2016. Dynamic characteristics and control of magnetorheological/electrorheological sandwich structures: A state-of-the-art review. Journal of Intelligent Material Systems and Structures 27 (15):2003–37. doi: 10.1177/1045389X15620041.
  • Eshaghi, M., R. Sedaghati, and S. Rakheja. 2017. Vibration analysis and optimal design of multi-layer plates partially treated with the MR fluid. Mechanical Systems and Signal Processing 82:80–102. doi: 10.1016/j.ymssp.2016.05.008.
  • Ewins, D. J. 2000. Modal testing: Theory, practice, and application. Baldock, Hertfordshire, England: Research Studies Press.
  • Han, Y.-M., J.-S. Oh, S. Kim, and S.-B. Choi. 2017. Design of multi-degree motion haptic mechanisms using smart fluid-based devices. Mechanics Based Design of Structures and Machines 45 (1):135–44. doi: 10.1080/15397734.2015.1132629.
  • Hasheminejad, S. M., and A. Fadavi-Ardakani. 2018. Elasto-acoustic response damping performance of a smart cavity-coupled electro-rheological fluid sandwich panel. Journal of Sandwich Structures & Materials 20:661–91. doi: 10.1177/1099636216673857.
  • Hasheminejad, S. M., and M. A. Motaaleghi. 2014. Supersonic flutter control of an electrorheological fluid-based smart circular cylindrical shell. International Journal of Structural Stability and Dynamics 14 (02):1350064. doi: 10.1142/S0219455413500648.
  • Hasheminejad, S. M., and M. Maleki. 2009. Free vibration and forced harmonic response of an electrorheological fluid-filled sandwich plate. Smart Materials and Structures 18 (5):055013. doi: 10.1088/0964-1726/18/5/055013.
  • Kolekar, S., K. Venkatesh, J.-S. Oh, and S.-B. Choi. 2019. Vibration controllability of sandwich structures with smart materials of electrorheological fluids and magnetorheological materials: A review. Journal of Vibration Engineering & Technologies 7 (4):359–377. doi: 10.1007/s42417-019-00120-5.
  • Korobko, E. V., G. I. Mikhasev, Z. A. Novikova, and M. A. Zhurauski. 2012. On damping vibrations of three-layered beam containing magnetorheological elastomer. Journal of Intelligent Material Systems and Structures 23 (9):1019–23. doi: 10.1177/1045389X12443596.
  • Kumar, S., V. Ranjan, and P. Jana. 2018. Free vibration analysis of thin functionally graded rectangular plates using the dynamic stiffness method. Composite Structures 197:39–53. doi: 10.1016/j.compstruct.2018.04.085.
  • Lall, A., N. Asnani, and B. Nakra. 1987. Vibration and damping analysis of rectangular plate with partially covered constrained viscoelastic layer. Journal of Vibration and Acoustics 109 (3):241–7. doi: 10.1115/1.3269427.
  • Leissa, A. W. 1973. The free vibration of rectangular plates. Journal of Sound and Vibration 31 (3):257–93. doi: 10.1016/S0022-460X(73)80371-2.
  • Li, S.-R., X. Wang, and R. C. Batra. 2015. Correspondence relations between deflection, buckling load, and frequencies of thin functionally graded material plates and those of corresponding homogeneous plates. Journal of Applied Mechanics 82 (11):111006. doi: 10.1115/1.4031186.
  • Mohseni, A., and M. Shakouri. 2019. Vibration and stability analysis of functionally graded CNT-reinforced composite beams with variable thickness on elastic foundation. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 233 (12): 2478–2489. doi: 10.1177/1464420719866222.
  • Nayak, B., S. Dwivedy, and K. Murthy. 2014. Dynamic stability of a rotating sandwich beam with magnetorheological elastomer core. European Journal of Mechanics - A/Solids 47:143–55. doi: 10.1016/j.euromechsol.2014.03.004.
  • Permoon, M. R., M. Shakouri, and H. Haddadpour. 2019. Free vibration analysis of sandwich conical shells with fractional viscoelastic core. Composite Structures 214:62–72. doi: 10.1016/j.compstruct.2019.01.082.
  • Reddy, J. N. 2004. Mechanics of laminated composite plates and shells: Theory and analysis. Boca Raton, FL: CRC Press.
  • Reddy, J. N., and C. D. Chin. 1998. Thermomechanical analysis of functionally graded cylinders and plates. Journal of Thermal Stresses 21 (6):593–626. doi: 10.1080/01495739808956165.
  • Winslow, W. M. 1949. Induced fibration of suspensions. Journal of Applied Physics 20 (12):1137–40. doi: 10.1063/1.1698285.
  • Yalcintas, M., and J. P. Coulter. 1995. Electrorheological material based adaptive beams subjected to various boundary conditions. Journal of Intelligent Material Systems and Structures 6 (5):700–17. doi: 10.1177/1045389X9500600511.
  • Yeh, J.-Y., and L.-W. Chen. 2004. Vibration of a sandwich plate with a constrained layer and electrorheological fluid core. Composite Structures 65 (2):251–8. doi: 10.1016/j.compstruct.2003.11.004.
  • Yeh, Z.-F., and Y.-S. Shih. 2006. Dynamic stability of a sandwich beam with magnetorheological Core#. Mechanics Based Design of Structures and Machines 34:181–200. doi: 10.1080/15397730600773403.
  • Yin, S., T. Yu, and P. Liu. 2013. Free vibration analyses of FGM thin plates by isogeometric analysis based on classical plate theory and physical neutral surface. Advances in Mechanical Engineering 5:634584. doi: 10.1155/2013/634584.
  • Ying, Z., H. Chen, and Y. Ni. 2012. Magnetorheological visco-elastomer and its application to suppressing microvibration of sandwich plates. Third International Conference on Smart Materials and Nanotechnology in Engineering. International Society for Optics and Photonics, 840918.
  • Zarezadeh, E., V. Hosseini, and A. Hadi. 2019. Torsional vibration of functionally graded nano-rod under magnetic field supported by a generalized torsional foundation based on nonlocal elasticity theory. Mechanics Based Design of Structures and Machines. doi: 10.1080/15397734.2019.1642766.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.