457
Views
40
CrossRef citations to date
0
Altmetric
Research Article

Stability analysis of single-walled carbon nanotubes embedded in winkler foundation placed in a thermal environment considering the surface effect using a new refined beam theory

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 581-595 | Received 14 Nov 2019, Accepted 24 Nov 2019, Published online: 04 Dec 2019

References

  • Akgöz, B., and Ö. Civalek. 2011. Buckling analysis of cantilever carbon nanotubes using the strain gradient elasticity and modified couple stress theories. Journal of Computational and Theoretical Nanoscience 8 (9):1821–7. doi:10.1166/jctn.2011.1888.
  • Arefi, M., and A. H. Soltan Arani. 2018. Higher order shear deformation bending results of a magnetoelectrothermoelastic functionally graded nanobeam in thermal, mechanical, electrical, and magnetic environments. Mechanics Based Design of Structures and Machines 46 (6):669–92. doi:10.1080/15397734.2018.1434002.
  • Berghouti, H., E. A. Adda Bedia, A. Benkhedda, and A. Tounsi. 2019. Vibration analysis of nonlocal porous nanobeams made of functionally graded material. Advances in Nano Research 7 (5):351–64.
  • Bedia, W. A., M. S. Houari, A. Bessaim, A. A. Bousahla, A. Tounsi, T. Saeed, and M. S. Alhodaly. 2019. A New Hyperbolic Two-Unknown Beam Model for Bending and Buckling Analysis of a Nonlocal Strain Gradient Nanobeams. Journal of Nano Research 57:175–91. doi:10.4028/www.scientific.net/JNanoR.57.175.
  • Chaabane, L. A., F. Bourada, M. Sekkal, S. Zerouati, F. Z. Zaoui, A. Tounsi, A. Derras, A. A. Bousahla, and A. Tounsi. 2019. Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation. Structural Engineering and Mechanics 71 (2):185–96.
  • Chang, W. J., and H. L. Lee. 2013. Free vibration of an embedded conical nanotube with surface effect. Digest Journal of Nanomaterials and Biostructures 8:1325–33.
  • Chen, X., C. Q. Fang, and X. Wang. 2017. The influence of surface effect on vibration behaviors of carbon nanotubes under initial stress. Physica E: Low-Dimensional Systems and Nanostructures 85:47–55. doi:10.1016/j.physe.2016.08.011.
  • Dastjerdi, S., and Y. T. Beni. 2019. A novel approach for nonlinear bending response of macro-and nanoplates with irregular variable thickness under nonuniform loading in thermal environment. Mechanics Based Design of Structures and Machines 47 (4):1–26. doi:10.1080/15397734.2018.1557529.
  • Draiche, K., A. A. Bousahla, A. Tounsi, A. S. Alwabli, A. Tounsi, and S. R. Mahmoud. 2019. Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory. Computers and Concrete 24 (4):369–78.
  • Draoui, A., M. Zidour, A. Tounsi, and B. Adim. 2019. Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT). Journal of Nano Research 57:117–35. doi:10.4028/www.scientific.net/JNanoR.57.117.
  • Eringen, A. C. 1972. Nonlocal polar elastic continua. International Journal of Engineering Science 10 (1):1–16. doi:10.1016/0020-7225(72)90070-5.
  • Farshi, B., A. Assadi, and A. Alinia-Ziazi. 2010. Frequency analysis of nanotubes with consideration of surface effects. Applied Physics Letters 96 (9):093105. doi:10.1063/1.3332579.
  • Fattahi, A. M., S. Sahmani, and N. A. Ahmed. 2019. Nonlocal strain gradient beam model for nonlinear secondary resonance analysis of functionally graded porous micro/nano-beams under periodic hard excitations. Mechanics Based Design of Structures and Machines 1–30. doi:10.1080/15397734.2019.1624176.
  • Jena, S. K., and S. Chakraverty. 2018a. Free vibration analysis of variable cross-section single layered graphene nano-ribbons (SLGNRs) using differential quadrature method. Frontiers in Built Environment 4:63. doi:10.3389/fbuil.2018.00063.
  • Jena, S. K., and S. Chakraverty. 2018b. Free vibration analysis of single walled carbon nanotube with exponentially varying stiffness. Curved and Layered Structures 5 (1):201–12. doi:10.1515/cls-2018-0015.
  • Jena, S. K., and S. Chakraverty. 2018c. Free vibration analysis of Euler-Bernoulli Nano beam using differential transform method. International Journal of Computational Materials Science and Engineering 07 (03):1850020. doi:10.1142/S2047684118500203.
  • Jena, S. K., and S. Chakraverty. 2019a. Differential quadrature and differential transformation methods in Buckling analysis of nanobeams. Curved and Layered Structures 6 (1):68–76. doi:10.1515/cls-2019-0006.
  • Jena, S. K., and S. Chakraverty. 2019b. Dynamic behavior of electro-magnetic nanobeam using haar wavelet method (HWM) and higher Order haar wavelet method (HOHWM). The European Physical Journal Plus 134 (10):538. doi:10.1140/epjp/i2019-12874-8.
  • Jena, S. K., and S. Chakraverty. 2019c. Dynamic analysis of single-layered graphene nano-ribbons (SLGNRs) with variable cross-section resting on elastic foundation. Curved and Layered Structures 6 (1):132–45. doi:10.1515/cls-2019-0011.
  • Jena, S. K., S. Chakraverty, and R. M. Jena. 2019. Propagation of uncertainty in free vibration of Euler-Bernoulli nanobeam. Journal of the Brazilian Society of Mechanical Sciences and Engineering 41 (10):436. doi:10.1007/s40430-019-1947-9.
  • Jena, S. K., S. Chakraverty, R. M. Jena, and F. Tornabene. 2019. A novel fractional nonlocal model and its application in buckling analysis of Euler-Bernoulli nanobeam. Materials Research Express 6 (5):055016. doi:10.1088/2053-1591/ab016b.
  • Jena, S. K., S. Chakraverty, and M. Malikan. 2019. Implementation of Haar wavelet, higher order Haar wavelet, and differential quadrature methods on buckling response of strain gradient nonlocal beam embedded in an elastic medium. Engineering with Computers. doi:10.1007/s00366-019-00883-1.
  • Jena, S. K., S. Chakraverty, and F. Tornabene. 2019a. Vibration characteristics of nanobeam with exponentially varying flexural rigidity resting on linearly varying elastic foundation using differential quadrature method. Materials Research Express 6 (8):085051. doi:10.1088/2053-1591/ab1f47.
  • Jena, S. K., S. Chakraverty, and F. Tornabene. 2019b. Dynamical behavior of nanobeam embedded in constant, linear, parabolic, and sinusoidal types of Winkler elastic foundation using first-order nonlocal strain gradient model. Materials Research Express 6 (8):0850f2. doi:10.1088/2053-1591/ab2779.
  • Jena, S. K., S. Chakraverty, and F. Tornabene. 2019c. Buckling behavior of nanobeam placed in an electro-magnetic field using shifted Chebyshev polynomials based Rayleigh-Ritz method. Nanomaterials 9 (9):1326. doi:10.3390/nano9091326.
  • Larbi, L.O., A. Kaci, M. S. A. Houari, and A. Tounsi. 2013. An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams. Mechanics Based Design of Structures and Machines 41 (4):421–33. doi:10.1080/15397734.2013.763713.
  • Lee, H. L., and W. J. Chang. 2010. Surface effects on frequency analysis of nanotubes using nonlocal Timoshenko beam theory. Journal of Applied Physics 108 (9):093503. doi:10.1063/1.3503853.
  • Li, L., and Y. Hu. 2015. Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory. International Journal of Engineering Science 97:84–94. doi:10.1016/j.ijengsci.2015.08.013.
  • Malikan, M. 2017. Electro-mechanical shear buckling of piezoelectric nanoplate using modified couple stress theory based on simplified first order shear deformation theory. Applied Mathematical Modelling 48:196–207. doi:10.1016/j.apm.2017.03.065.
  • Malikan, M. 2019. On the buckling response of axially pressurized nanotubes based on a novel nonlocal beam theory. Journal of Applied and Computational Mechanics 5:103–12.
  • Malikan, M., and S. Dastjerdi. 2018. Analytical buckling of FG nanobeams on the basis of a new one variable first-order shear deformation beam theory. International Journal of Engineering & Applied Sciences 10:21–34. doi:10.24107/ijeas.420838.
  • Malikan, M., R. Dimitri, and F. Tornabene. 2019. Transient response of oscillated carbon nanotubes with an internal and external damping. Composites Part B: Engineering 158:198–205. doi:10.1016/j.compositesb.2018.09.092.
  • Malikan, M., and V. B. Nguyen. 2018. Buckling analysis of piezo-magnetoelectric nanoplates in hygrothermal environment based on a novel one variable plate theory combining with higher-order nonlocal strain gradient theory. Physica E: Low-Dimensional Systems and Nanostructures 102:8–28. doi:10.1016/j.physe.2018.04.018.
  • Malikan, M., V. B. Nguyen, R. Dimitri, and F. Tornabene. 2019. Dynamic modeling of non-cylindrical curved viscoelastic single-walled carbon nanotubes based on the second gradient theory. Materials Research Express 6 (7):075041. doi:10.1088/2053-1591/ab15ff.
  • Malikan, M., V. B. Nguyen, and F. Tornabene. 2018a. Damped forced vibration analysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory. Engineering Science and Technology. An International Journal 21:778–86. doi:10.1016/j.jestch.2018.06.001.
  • Malikan, M., V. B. Nguyen, and F. Tornabene. 2018b. Electromagnetic forced vibrations of composite nanoplates using nonlocal strain gradient theory. Materials Research Express 5 (7):075031. doi:10.1088/2053-1591/aad144.
  • Malikan, M., F. Tornabene, and R. Dimitri. 2018. Nonlocal three-dimensional theory of elasticity for buckling behavior of functionally graded porous nanoplates using volume integrals. Materials Research Express 5 (9):095006. doi:10.1088/2053-1591/aad4c3.
  • Medani, M., A. Benahmed, M. Zidour, H. Heireche, A. Tounsi, A. A. Bousahla, A. Tounsi, and S. R. Mahmoud. 2019. Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle. Steel and Composite Structures 32 (5):595–610.
  • Mehralian, F., Y. T. Beni, and M. Karimi Zeverdejani. 2017. Calibration of nonlocal strain gradient shell model for buckling analysis of nanotubes using molecular dynamics simulations. Physica B: Condensed Matter 521:102–11. doi:10.1016/j.physb.2017.06.058.
  • Murmu, T., and S. C. Pradhan. 2010. Thermal effects on the stability of embedded carbon nanotubes. Computational Materials Science 47 (3):721–7. doi:10.1016/j.commatsci.2009.10.015.
  • Pradhan, S. C., and G. K. Reddy. 2011. Buckling analysis of single walled carbon nanotube on Winkler foundation using nonlocal elasticity theory and DTM. Computational Materials Science 50 (3):1052–6. doi:10.1016/j.commatsci.2010.11.001.
  • Semmah, A., H. Heireche, A. A. Bousahla, and A. Tounsi. 2019. Thermal buckling analysis of SWBNNT on Winkler foundation by non-local FSDT. Advances in Nano Research 7 (2):89. doi:10.12989/anr.2017.5.1.001.
  • She, G. L., F. G. Yuan, Y. R. Ren, and W. Sh Xiao. 2017. On buckling and post buckling behavior of nanotubes. International Journal of Engineering Science 121:130–42. doi:10.1016/j.ijengsci.2017.09.005.
  • Sun, D.-L., and X.-F. Li. 2019. Initial value method for free vibration of axially loaded functionally graded Timoshenko beams with nonuniform cross section. Mechanics Based Design of Structures and Machines 47 (1):102–20. doi:10.1080/15397734.2018.1526690.
  • Teifouet, M., A. Robinson, and S. Adali. 2017. Buckling of nonuniform carbon nanotubes under concentrated and distributed axial loads. Mechanical Sciences 8:299–305. doi:10.5194/ms-8-299-2017.
  • Thai, H.-T. 2012. A nonlocal beam theory for bending, buckling, and vibration of nanobeams. International Journal of Engineering Science 52:56–64. doi:10.1016/j.ijengsci.2011.11.011.
  • Wang, B. L., M. Hoffman, and A. B. Yu. 2012. Buckling analysis of embedded nanotubes using gradient continuum theory. Mechanics of Materials 45:52–60. doi:10.1016/j.mechmat.2011.10.003.
  • Wang, C. M., Y. Y. Zhang, S. S. Ramesh, and S. Kitipornchai. 2006. Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory. Journal of Physics D: Applied Physics 39 (17):3904–9. doi:10.1088/0022-3727/39/17/029.
  • Zhen, Y. X. 2017. Wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes with surface and nonlocal effects. Physica E: Low-Dimensional Systems and Nanostructures 86:275–9. doi:10.1016/j.physe.2016.10.037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.