134
Views
32
CrossRef citations to date
0
Altmetric
Research Article

Photo-thermo-elastic wave propagation under the influence of magnetic field in presence of memory responses

ORCID Icon, ORCID Icon &
Pages 862-883 | Received 26 Oct 2019, Accepted 02 Dec 2019, Published online: 23 Dec 2019

References

  • Abbas, I. A. 2006. Natural frequencies of a poroelastic hollow cylinder. Acta Mechanica 186 (1–4):229–37. doi:10.1007/s00707-006-0314-y.
  • Abbas, I. A. 2014. Eigenvalue approach in a three-dimensional generalized thermoelastic interactions with temperature-dependent material properties. Computers & Mathematics with Applications 68 (12):2036–56. doi:10.1016/j.camwa.2014.09.016.
  • Abbas, I. A., A-e-n N. Abd-Alla, and M. I. A. Othman. 2011. Generalized magneto-thermoelasticity in a fiber-reinforced anisotropic half-space. International Journal of Thermophysics 32 (5):1071–85. doi:10.1007/s10765-011-0957-3.
  • Almond, D. P., P. Patel, and P. M. Patel. 1996. Photothermal science and techniques. Vol. 10. Berlin, Germany: Springer Science & Business Media.
  • Baksi, A., R. K. Bera, and L. Debnath. 2005. A study of magneto-thermoelastic problems with thermal relaxation and heat sources in a three-dimensional infinite rotating elastic medium. International Journal of Engineering Science 43 (19–20):1419–34. doi:10.1016/j.ijengsci.2005.08.002.
  • Biot, M. A. 1956. Thermoelasticity and irreversible thermodynamics. Journal of Applied Physics 27 (3):240–53. doi:10.1063/1.1722351.
  • Chakravorty, S., S. Ghosh, and A. Sur. 2017. Thermo-viscoelastic interaction in a three-dimensional problem subjected to fractional heat conduction. Procedia Engineering 173:851–8. doi:10.1016/j.proeng.2016.12.125.
  • Debnath, L., and D. Bhatta. 2014. Integral transforms and their applications. London: Chapman and Hall/CRC.
  • El-Hossary, F. M., S. M. Khalil, M. A. W. Kassem, and K. Lotfy. 2010. Effect of kind rolling on the properties of plasma-formed nitride layers on Fe93Ni4Ti3. Journal of Modern Physics 01 (03):151–7. doi:10.4236/jmp.2010.13022.
  • El-Karamany, A. S., and M. A. Ezzat. 2016. Thermoelastic diffusion with memory-dependent derivative. Journal of Thermal Stresses 39 (9):1035–50. doi:10.1080/01495739.2016.1192847.
  • Ezzat, M. A., A. S. El-Karamany, and A. A. El-Bary. 2016. Generalized thermoelasticity with memory-dependent derivatives involving two temperatures. Mechanics of Advanced Materials and Structures 23 (5):545–53. doi:10.1080/15376494.2015.1007189.
  • Hobiny, A. D., and I. A. Abbas. 2017. A study on photothermal waves in an unbounded semiconductor medium with cylindrical cavity. Mechanics of Time-Dependent Materials 21 (1):61–72. doi:10.1007/s11043-016-9318-8.
  • Hobiny, A., and I. A. Abbas. 2018. Analytical solutions of photo-thermo-elastic waves in a non-homogenous semiconducting material. Results in Physics 10:385–90. doi:10.1016/j.rinp.2018.06.035.
  • Karmakar, R., A. Sur, and M. Kanoria. 2016. Generalized thermoelastic problem of an infinite body with a spherical cavity under dual-phase-lags. Journal of Applied Mechanics and Technical Physics 57 (4):652–65. doi:10.1134/S002189441604009X.
  • Lord, H. W., and Y. Shulman. 1967. A generalized dynamical theory of thermoelasticity. Journal of the Mechanics and Physics of Solids 15 (5):299–309. doi:10.1016/0022-5096(67)90024-5.
  • Lotfy, K. 2017a. Effects of cold atmospheric plasma jet treatment on the seed germination and enhancement growth of watermelon. Open Journal of Applied Sciences 07 (12):705–19. doi:10.4236/ojapps.2017.712050.
  • Lotfy, K. 2017b. A novel solution of fractional order heat equation for photothermal waves in a semiconductor medium with a spherical cavity. Chaos Solitons & Fractals 99:233–42. doi:10.1016/j.chaos.2017.04.017.
  • Mandelis, A. 1987. Photoacoustic and thermal wave phenomena in semiconductors. Oxford: Elsevier Science & Technology.
  • Mandelis, A. 1997. Thermoelectronic-wave coupling in laser photothermal theory of semiconductors at elevated temperatures. Optical Engineering 36 (2):459. doi:10.1117/1.601217.
  • Mandelis, A., and P. Hess. 2000. Semiconductors and electronic materials. Vol. 4. Bellingham, Washington: Spie Press.
  • Mondal, S. 2019. Memory response for thermal distributions moving over a magneto-thermoelastic rod under Eringen’s nonlocal theory. Journal of Thermal Stresses. doi:10.1080/01495739.2019.1676682.
  • Mondal, S., A. Sur, D. Bhattacharya, and M. Kanoria. 2019. Thermoelastic interaction in a magneto-thermoelastic rod with memory-dependent derivative due to the presence of moving heat source. Indian Journal of Physics. doi:10.1007/s12648-019-01593-6.
  • Mondal, S., A. Sur, and M. Kanoria. 2019a. A memory response in the vibration of a microscale beam induced by laser pulse. Journal of Thermal Stresses 42 (11):1415–31. doi:10.1080/01495739.2019.1629854.
  • Mondal, S., A. Sur, and M. Kanoria. 2019b. Magneto-thermoelastic interaction in a reinforced medium with cylindrical cavity in the context of Caputo-Fabrizio heat transport law. Acta Mechanica 230 (12):4367–84. doi:10.1007/s00707-019-02498-5.
  • Mondal, S., A. Sur, and M. Kanoria. 2019c. Transient heating within skin tissue due to time-dependent thermal therapy in the context of memory dependent heat transport law. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2019.1686992.
  • Mondal, S., A. Sur, and M. Kanoria. 2019d. Transient response in a piezoelastic medium due to the influence of magnetic field with memory-dependent derivative. Acta Mechanica 230 (7):2325–38. doi:10.1007/s00707-019-02380-4.
  • Nowacki, W. 1975. Dynamic Problems of Thermoelasticity, Leyden, the Netherlands: Noordhoff Int. Publishing.
  • Othman, M. I. A., and E. E. M. Eraki. 2017. Generalized magneto-thermoelastic half-space with diffusion under initial stress using three-phase-lag model. Mechanics Based Design of Structures and Machines 45 (2):145–59. doi:10.1080/15397734.2016.1152193.
  • Othman, M. I. A., and S. Mondal. 2019. Memory-dependent derivative effect on wave propagation of micropolar thermoelastic medium under pulsed laser heating with three theories. International Journal of Numerical Methods for Heat & Fluid Flow. doi:10.1108/HFF-05-2019-0402.
  • Purkait, P., A. Sur, and M. Kanoria. 2019a. Elasto-thermodiffusive response in a spherical shell subjected to memory-dependent heat transfer. Waves in Random and Complex Media. doi:10.1080/17455030.2019.1599464.
  • Purkait, P., A. Sur, and M. Kanoria. 2019b. Magneto-thermoelastic interaction in a functionally graded medium under gravitational field. Waves in Random and Complex Media. doi:10.1080/17455030.2019.1688891.
  • Quintanilla, R., and R. Racke. 2006. A note on stability in dual-phase-lag heat conduction. International Journal of Heat and Mass Transfer 49 (7–8):1209–13. doi:10.1016/j.ijheatmasstransfer.2005.10.016.
  • Sarkar, N., and S. Mondal. 2019. Transient responses in a two-temperature thermoelastic infinite medium having cylindrical cavity due to moving heat source with memory dependent derivative. ZAMM Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 99 (6):e201800343. doi:10.1002/zamm.201800343.
  • Song, Y. Q., J. T. Bai, and Z. Y. Ren. 2012. Reflection of plane waves in a semiconducting medium under photothermal theory. International Journal of Thermophysics 33 (7):1270–87. doi:10.1007/s10765-012-1239-4.
  • Song, Y., D. M. Todorovic, B. Cretin, and P. Vairac. 2010. Study on the generalized thermoelastic vibration of the optically excited semiconducting microcantilevers. International Journal of Solids and Structures 47 (14–15):1871–5. doi:10.1016/j.ijsolstr.2010.03.020.
  • Sur, A., and M. Kanoria. 2017. Three-dimensional thermoelastic problem under two-temperature theory. International Journal of Computational Methods 14 (03):1750030. doi:10.1142/S021987621750030X.
  • Sur, A., and M. Kanoria. 2019a. Memory response on thermal wave propagation in an elastic solid with voids. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2019.1652647.
  • Sur, A., and M. Kanoria. 2019b. Field equations and corresponding memory responses for a fiber-reinforced functionally graded due to heat source. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2019.1693897.
  • Sur, A., S. Mondal, and M. Kanoria. 2019a. Influence of moving heat source on skin tissue in the context of two-temperature Caputo-Fabrizio heat transport law. Journal of Multiscale Modelling. World Scientific, WOS. doi:10.1142/S175697372050002X.
  • Sur, A., S. Mondal, and M. Kanoria. 2019b. Influence of moving heat source on skin tissue in the context of two-temperature memory-dependent heat transport law. Journal of Thermal Stresses. doi:10.1080/01495739.2019.1660288.
  • Sur, A., S. Mondal, and M. Kanoria. 2019c. Memory response on wave propagation in a thermoelastic plate due to moving band-type thermal loads and magnetic field. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2019.1672558.
  • Sur, A., P. Pal, and M. Kanoria. 2018. Modeling of memory-dependent derivative in a fiber-reinforced plate under gravitational effect. Journal of Thermal Stresses 41 (8):973–92. doi:10.1080/01495739.2018.1447316.
  • Sur, A., P. Pal, S. Mondal, and M. Kanoria. 2019. Finite element analysis in a fiber-reinforced cylinder due to memory-dependent heat transfer. Acta Mechanica 230 (5):1607–24. doi:10.1007/s00707-018-2357-2.
  • Sur, A., S. Paul, and M. Kanoria. 2019. Modeling of memory-dependent derivative in a functionally graded plate. Waves in Random and Complex Media. doi:10.1080/17455030.2019.1606962.
  • Tzou, D. Y. 1995. A unified field approach for heat conduction from macro- to micro-scales. Journal of Heat Transfer 117 (1):8–16. doi:10.1115/1.2822329.
  • Tzou, D. Y. 2014. Macro-to Microscale Heat Transfer: The Lagging Behavior. 1st ed. Hoboken, New Jersey: Wiley. doi:10.1002/9781118818275.
  • Wang, J.L., and H.F. Li. 2011. Surpassing the fractional derivative: Concept of the memory-dependent derivative. Computers & Mathematics with Applications 62 (3):1562–7. doi:10.1016/j.camwa.2011.04.028.
  • Youssef, H. M. 2006. Generalized magneto-thermoelasticity in a conducting medium with variable material properties. Applied Mathematics and Computation 173 (2):822–33. doi:10.1016/j.amc.2005.04.017.
  • Yu, Y.J., W. Hu, and X.G. Tian. 2014. A novel generalized thermoelasticity model based on memory-dependent derivative. International Journal of Engineering Science 81:123–34. doi:10.1016/j.ijengsci.2014.04.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.