321
Views
46
CrossRef citations to date
0
Altmetric
Research Article

Analytical solutions of fractional bioheat model in a spherical tissue

ORCID Icon & ORCID Icon
Pages 430-439 | Received 01 Apr 2019, Accepted 04 Dec 2019, Published online: 09 Dec 2019

References

  • Abbas, I. A. 2014. A problem on functional graded material under fractional order theory of thermoelasticity. Theoretical and Applied Fracture Mechanics 74:18–22. doi:10.1016/j.tafmec.2014.05.005.
  • Abbas, I. A. 2015a. Analytical solution for a free vibration of a thermoelastic hollow sphere. Mechanics Based Design of Structures and Machines 43 (3):265–76. doi:10.1080/15397734.2014.956244.
  • Abbas, I. A. 2015b. A dual phase lag model on thermoelastic interaction in an infinite fiber-reinforced anisotropic medium with a circular hole. Mechanics Based Design of Structures and Machines 43 (4):501–13. doi:10.1080/15397734.2015.1029589.
  • Abbas, I. A. 2017. Free vibration of a thermoelastic hollow cylinder under two-temperature generalized thermoelastic theory. Mechanics Based Design of Structures and Machines 45 (3):395–405. doi:10.1080/15397734.2016.1231065.
  • Abbas, I. A., and H. M. Youssef. 2013. Two-temperature generalized thermoelasticity under ramp-type heating by finite element method. Meccanica 48 (2):331–9. doi:10.1007/s11012-012-9604-8.
  • Abd-Alla, A.-E.-N N., and I. Abbas. 2002. A problem of generalized magnetothermoelasticity for an infinitely long, perfectly conducting cylinder. Journal of Thermal Stresses 25 (11):1009–25. doi:10.1080/01495730290074612.
  • Askarizadeh, H., and H. Ahmadikia. 2014. Analytical analysis of the dual-phase-lag model of bioheat transfer equation during transient heating of skin tissue. Heat and Mass Transfer 50 (12):1673–84. doi:10.1007/s00231-014-1373-6.
  • Biswas, S. 2019. Modeling of memory-dependent derivatives in orthotropic medium with three-phase-lag model under the effect of magnetic field. Mechanics Based Design of Structures and Machines 47 (3):302–18. doi:10.1080/15397734.2018.1548968.
  • Cattaneo, C. 1958. A form of heat conduction equation which eliminates the paradox of instantaneous propagation. Compte Rendus 247 (4):431–3.
  • Díaz, S. H., J. S. Nelson, and B. J. Wong. 2002. Rate process analysis of thermal damage in cartilage. Physics in Medicine and Biology 48 (1):19. doi:10.1088/0031-9155/48/1/302.
  • Dillenseger, J.-L., and S. Esneault. 2010. Fast FFT-based bioheat transfer equation computation. Computers in Biology and Medicine 40 (2):119–23. doi:10.1016/j.compbiomed.2009.11.008.
  • Ezzat, M. A. 2012. State space approach to thermoelectric fluid with fractional order heat transfer. Heat and Mass Transfer 48 (1):71–82. doi:10.1007/s00231-011-0830-8.
  • Ezzat, M. A., N. S. AlSowayan, Z. I. Al-Muhiameed, and S. M. Ezzat. 2014. Fractional modelling of Pennes’ bioheat transfer equation. Heat and Mass Transfer 50 (7):907–14. doi:10.1007/s00231-014-1300-x.
  • Ezzat, M. A., El‐Bary, A. A.. and N. S. Al-Sowayan 2016. Tissue responses to fractional transient heating with sinusoidal heat flux condition on skin surface. Animal Science Journal 87 (10):1304–11. doi:10.1111/asj.12568.
  • Gardner, C. M., S. L. Jacques, and A. Welch. 1996. Light transport in tissue: Accurate expressions for one‐dimensional fluence rate and escape function based upon Monte Carlo simulation. Lasers in Surgery and Medicine 18 (2):129–38. doi:10.1002/(SICI)1096-9101(1996)18:2<129::AID-LSM2>3.0.CO;2-U.
  • Gupta, P. K., J. Singh, and K. Rai. 2010. Numerical simulation for heat transfer in tissues during thermal therapy. Journal of Thermal Biology 35 (6):295–301.
  • Gupta, P. K., J. Singh, K. Rai, and S. Rai. 2013. Solution of the heat transfer problem in tissues during hyperthermia by finite difference–decomposition method. Applied Mathematics and Computation 219 (12):6882–92.
  • Hobiny, A. D., and I. A. Abbas. 2018. Theoretical analysis of thermal damages in skin tissue induced by intense moving heat source. International Journal of Heat and Mass Transfer 124:1011–4.
  • Kumar, R., A. K. Vashishth, and S. Ghangas. 2019. Non-local heat conduction approach in a bi-layer tissue during magnetic fluid hyperthermia with dual phase lag model. Bio-Medical Materials and Engineering 30 (4):387–402. doi:10.3233/BME-191061.
  • Lin, S.-Y., M.-H. Shao, S.-P. Shih, and H.-Y. Lu. 2019. Investigation of the problems of hyperthermia treatment using laser heating through differential transformation. Paper presented at the Engineering Innovation and Design: Proceedings of the 7th International Conference on Innovation, Communication and Engineering (ICICE 2018), November 9-14, 2018, Hangzhou, China.
  • Liu, K.-C., and F.-J. Tu. 2019. Numerical solution of bioheat transfer problems with transient blood temperature. International Journal of Computational Methods 16 (04):1843001. doi:10.1142/S0219876218430016.
  • Mao, J.-J., L.-L. Ke, J. Yang, S. Kitipornchai, and Y.-S. Wang. 2018. Thermoelastic instability of functionally graded materials with interaction of frictional heat and contact resistance. Mechanics Based Design of Structures and Machines 46 (2):139–56.
  • Marin, M. 1997. Cesaro means in thermoelasticity of dipolar bodies. Acta Mechanica 122 (1-4):155–68. doi:10.1007/BF01181996.
  • Marin, M., and A. Öchsner. 2017. The effect of a dipolar structure on the Hölder stability in Green–Naghdi thermoelasticity. Continuum Mechanics and Thermodynamics 29 (6):1365–74.
  • Pennes, H. H. 1948. Analysis of tissue and arterial blood temperatures in the resting human forearm. Journal of Applied Physiology 1 (2):93–122. doi:10.1152/jappl.1948.1.2.93.
  • Sherief, H. H., A. El-Sayed, and A. A. El-Latief. 2010. Fractional order theory of thermoelasticity. International Journal of Solids and Structures 47 (2):269–75. doi:10.1016/j.ijsolstr.2009.09.034.
  • Stehfest, H. 1970. Algorithm 368: Numerical inversion of Laplace transforms [D5]. Communications of the ACM 13 (1):47–9. doi:10.1145/361953.361969.
  • Sur, A., and M. Kanoria. 2019. Memory response on thermal wave propagation in an elastic solid with voids. Mechanics Based Design of Structures and Machines, 1–22. doi:10.1080/15397734.2019.1652647.
  • Vernotte, P. 1958. Les paradoxes de la theorie continue de l'equation de la chaleur. Compt. Rendu 246:3154–5.
  • Zhu, D., Q. Luo, G. Zhu, and W. Liu. 2002. Kinetic thermal response and damage in laser coagulation of tissue. Lasers in Surgery and Medicine 31 (5):313–21. doi:10.1002/lsm.10108.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.