227
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Free vibration and instability analysis of a viscoelastic micro-shell conveying viscous fluid based on modified couple stress theory in thermal environment

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1198-1236 | Received 15 Jan 2020, Accepted 17 Mar 2020, Published online: 14 May 2020

References

  • Abdelhady, M., A. Rashvand, M. Moness, H. Richter, and D. Simon. 2017. System identification and control optimization of an active prosthetic knee in swing phase. In 2017 American Control Conference (ACC), 857–62, Seattle, WA, USA. doi:10.23919/ACC.2017.7963060.
  • Alibeigloo, A., and M. Shaban. 2013. Free vibration analysis of carbon nanotubes by using three-dimensional theory of elasticity. Acta Mechanica 224 (7):1415–27. doi:10.1007/s00707-013-0817-2.
  • Ayoubi, P., and A. Alibeigloo. 2017. Three-dimensional transient analysis of FGM cylindrical shell subjected to thermal and mechanical loading. Journal of Thermal Stresses 40 (9):1166–83. doi:10.1080/01495739.2017.1325720.
  • Bagheri, E., and M. Asghari. 2019. Elasticity formulation for motion equations of couple stress based micro-rotating disks with varying speeds. Mechanics Based Design of Structures and Machines: 1–19. doi:10.1080/15397734.2019.1652833.
  • Bellman, R., and J. Casti. 1971. Differential quadrature and long-term integration. Journal of Mathematical Analysis and Applications 34 (2):235–8. doi: 10.1016/0022-247X.(71)90110-7. doi:10.1016/0022-247X(71)90110-7.
  • Beskok, A., and G. E. K. 1999. Report: A model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermophysical Engineering 3 (1):43–77. doi:10.1080/108939599199864.
  • Cosserat, E., and F. Cosserat. 1909. Theorie des corps deformabies. Paris: A. Hermann et Fils.
  • Eringen, A. C. 1972. Nonlocal polar elastic continua. International Journal of Engineering Science 10 (1):1–16. doi: 10.1016/0020-7225.(72)90070-5. doi:10.1016/0020-7225(72)90070-5.
  • Esmailpoor Hajilak, Z., J. Pourghader, D. Hashemabadi, F. Sharifi Bagh, M. Habibi, and H. Safarpour. 2019. Multilayer GPLRC composite cylindrical nanoshell using modified strain gradient theory. Mechanics Based Design of Structures and Machines 47 (5):521–45.66.743. doi:10.1080/15397734.2019.1.
  • Fereidoon, A., E. Andalib, and A. Mirafzal. 2016. Nonlinear vibration of viscoelastic embedded-dwcnts integrated with piezoelectric layers-conveying viscous fluid considering surface effects. Physica E: Low-Dimensional Systems and Nanostructures 81:205–18. doi:10.1016/j.physe.2016.03.020.
  • Ghavanloo, E., and S. A. Fazelzadeh. 2011. Flow-thermoelastic vibration and instability analysis of viscoelastic carbon nanotubes embedded in viscous fluid. Physica E: Low-Dimensional Systems and Nanostructures 44 (1):17–24. doi:10.1016/j.physe.2011.06.024.
  • Ghayesh, M. H., and M. Amabili. 2013. Parametric stability and bifurcations of axially moving viscoelastic beams with time-dependent axial speed. Mechanics Based Design of Structures and Machines 41 (3):359–81. doi:10.1080/15397734.2013.771093.
  • Ghorbani, S., M. Bashipour, and M. Kolahdouz. 2019. Improving unbiased terahertz photoconductive antenna based on dissimilar Schottky barriers using plasmonic mode excitation. Optik 194:162975. doi:10.1016/j.ijleo.2019.162975.
  • Ghorbanpour-Arani, A. H., A. Rastgoo, M. M. Sharafi, R. Kolahchi, and A. Ghorbanpour Arani. 2016. Nonlocal viscoelasticity based vibration of double viscoelastic piezoelectric nanobeam systems. Meccanica 51 (1):25–40. doi:10.1007/s11012-014-9991-0.
  • Ghorbanpour Arani, A., S. Amir, P. Dashti, and M. Yousefi. 2014. Flow-induced vibration of double bonded visco-cnts under magnetic fields considering surface effect. Computational Materials Science 86:144–54. doi:10.1016/j.commatsci.2014.01.047.
  • Gurtin, M. E., and A. I. Murdoch. 1975. A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis 57 (4):291–323. doi:10.1007/BF00261375.
  • Hashemi, M., and M. Asghari. 2017. On the size-dependent flexural vibration characteristics of unbalanced couple stress-based micro-spinning beams. Mechanics Based Design of Structures and Machines 45 (1):1–11. doi:10.1080/15397734.2015.1125298.
  • Hosseini-Hashemi, S., A. R. Abaei, and M. R. Ilkhani. 2015. Free vibrations of functionally graded viscoelastic cylindrical panel under various boundary conditions. Composite Structures 126:1–15. doi:10.1016/j.compstruct.2015.02.031.
  • Jiang, H., B. Liu, Y. Huang, and K. C. Hwang. 2004. Thermal expansion of single wall carbon nanotubes. Journal of Engineering Materials and Technology 126 (3):265–70. doi:10.1115/1.1752925.
  • Karamanli, A., and M. Aydogdu. 2019. Structural dynamics and stability analysis of 2d-fg microbeams with two-directional porosity distribution and variable material length scale parameter. Mechanics Based Design of Structures and Machines: 1–28. doi:10.1080/15397734.2019.1627219.
  • Kazemirad, S., M. H. Ghayesh, and M. Amabili. 2013. Thermo-mechanical nonlinear dynamics of a buckled axially moving beam. Archive of Applied Mechanics 83 (1):25–42. doi:10.1007/s00419-012-0630-8.
  • Khalili, S. M. R., A. Davar, and K. M. Fard. 2012. Free vibration analysis of homogeneous isotropic circular cylindrical shells based on a new three-dimensional refined higher-order theory. International Journal of Mechanical Sciences 56 (1):1–25. doi:10.1016/j.ijmecsci.2011.11.002.
  • Khosravian, N., and H. Rafii-Tabar. 2008. Computational modelling of a non-viscous fluid flow in a multi-walled carbon nanotube modelled as a timoshenko beam. Nanotechnology 19 (27):275703. doi:10.1088/0957-4484/19/27/275703.
  • Khudayarov, B. A., and F. Z. Turaev. 2019. Mathematical simulation of nonlinear oscillations of viscoelastic pipelines conveying fluid. Applied Mathematical Modelling 66:662–79. doi:10.1016/j.apm.2018.10.008.
  • Lim, C. W., Y. F. Ma, S. Kitipornchai, C. M. Wang, and R. K. K. Yuen. 2003. Buckling of vertical cylindrical shells under combined end pressure and body force. Journal of Engineering Mechanics 129 (8):876–84. doi:10.1061/(ASCE)0733-9399(2003)129:8(876).
  • Mindlin, R. D. 1963. Influence of couple-stresses on stress concentrations. Experimental Mechanics 3 (1):1–7. doi:10.1007/BF02327219.
  • Mindlin, R. D. 1965. Stress functions for a cosserat continuum. International Journal of Solids and Structures 1 (3):265–71. doi: 10.1016/0020-7683.(65)90033-8. doi:10.1016/0020-7683(65)90033-8.
  • Mobki, H., K. Rashvand, S. Afrang, M. H. Sadeghi, and G. Rezazadeh. 2014. Design, simulation and bifurcation analysis of a novel micromachined tunable capacitor with extended tenability. Transactions of the Canadian Society for Mechanical Engineering 38 (1):15–29. doi:10.1139/tcsme-2014-0002.
  • Norouzi, H., and A. Alibeigloo. 2018. Three-dimensional thermoviscoelastic analysis of a fgm cylindrical panel using state space differential quadrature method. Journal of Thermal Stresses 41 (3):383–98. doi:10.1080/01495739.2017.1395720.
  • Rabani Bidgoli, M., M. Saeed Karimi, and A. Ghorbanpour Arani. 2016. Nonlinear vibration and instability analysis of functionally graded cnt-reinforced cylindrical shells conveying viscous fluid resting on orthotropic pasternak medium. Mechanics of Advanced Materials and Structures 23 (7):819–31. doi:10.1080/15376494.2015.1029170.
  • Rashvand, K., G. Rezazadeh, and H. Madinei. 2014. Effect of length-scale parameter on pull-in voltage and natural frequency of a micro-plate. International Journal of Engineering 3:375–84. doi:10.5829/idosi.ije.2014.27.03c.04.
  • Rashvand, K., G. Rezazadeh, H. Mobki, and M. H. Ghayesh. 2013. On the size-dependent behavior of a capacitive circular micro-plate considering the variable length-scale parameter. International Journal of Mechanical Sciences 77:333–42. doi:10.1016/j.ijmecsci.2013.09.023.
  • Rashvand, K., G. Rezazadeh, M. Sheikhlou, and S. Kazemirad. 2012. The response of a rectangular micro-plate to mechanical shocks considering modified couple stress theory. Paper presentat at the 2nd International Conference on Acoustics and Vibration, Tehran, Iran, December 26–27.
  • Safarpour, M., A. Ghabussi, F. Ebrahimi, M. Habibi, and H. Safarpour. 2020. Frequency characteristics of fg-gplrc viscoelastic thick annular plate with the aid of gdqm. Thin-Walled Structures 150:106683. doi:10.1016/j.tws.2020.106683.
  • Safarpour, M., A. Rahimi, A. Alibeigloo, H. Bisheh, and A. Forooghi. 2019. Parametric study of three-dimensional bending and frequency of FG-GPLRC porous circular and annular plates on different boundary conditions. Mechanics Based Design of Structures and Machines: 1–31. doi:10.1080/15397734.2019.1701491.
  • Sahmani, S.,. R. Ansari, R. Gholami, and A. Darvizeh. 2013. Dynamic stability analysis of functionally graded higher-order shear deformable microshells based on the modified couple stress elasticity theory. Composites Part B: Engineering 51:44–53. doi:10.1016/j.compositesb.2013.02.037.
  • Shahgholian-Ghahfarokhi, D., M. Safarpour, and A. Rahimi. 2019. Torsional buckling analyses of functionally graded porous nanocomposite cylindrical shells reinforced with graphene platelets (gpls). Mechanics Based Design of Structures and Machines: 1–22. doi:10.1080/15397734.2019.1666723.
  • Shu, C. 2000. Differential quadrature and its application in engineering. London: Springer.
  • Tadi Beni, Y., F. Mehralian, and H. Razavi. 2015. Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory. Composite Structures 120:65–78. doi:10.1016/j.compstruct.2014.09.065.
  • Wang, L., and Q. Ni. 2009. A reappraisal of the computational modelling of carbon nanotubes conveying viscous fluid. Mechanics Research Communications 36 (7):833–7. doi:10.1016/j.mechrescom.2009.05.003.
  • Wang, Y., R. Zeng, and M. Safarpour. 2020. Vibration analysis of fg-gplrc annular plate in a thermal environment. Mechanics Based Design of Structures and Machines: 1–19. doi:10.1080/15397734.2020.1719508.
  • Wang, Y. Q., H. H. Li, Y. F. Zhang, and J. W. Zu. 2018. A nonlinear surface-stress-dependent model for vibration analysis of cylindrical nanoscale shells conveying fluid. Applied Mathematical Modelling 64:55–70. doi:10.1016/j.apm.2018.07.016.
  • Yang, F., A. C. M. Chong, D. C. C. Lam, and P. Tong. 2002. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures 39 (10):2731–43. doi: 10.1016/S0020-7683.(02)00152-X. doi:10.1016/S0020-7683(02)00152-X.
  • Yang, X.-D., J.-H. Yang, Y.-J. Qian, W. Zhang, and R. V. N. Melnik. 2018. Dynamics of a beam with both axial moving and spinning motion: An example of bi-gyroscopic continua. European Journal of Mechanics - A/Solids 69:231–7. doi:10.1016/j.euromechsol.2018.01.006.
  • Yoon, J., C. Q. Ru, and A. Mioduchowski. 2005. Vibration and instability of carbon nanotubes conveying fluid. Composites Science and Technology 65 (9):1326–36. doi:10.1016/j.compscitech.2004.12.002.
  • Zeighampour, H., and Y. T. Beni. 2014. Cylindrical thin-shell model based on modified strain gradient theory. International Journal of Engineering Science 78:27–47. doi:10.1016/j.ijengsci.2014.01.004.
  • Zhang, B., Y. He, D. Liu, L. Shen, and J. Lei. 2015. Free vibration analysis of four-unknown shear deformable functionally graded cylindrical microshells based on the strain gradient elasticity theory. Composite Structures 119:578–97. doi:10.1016/j.compstruct.2014.09.032.
  • Zhang, W., Y. X. Hao, and J. Yang. 2012. Nonlinear dynamics of FGM circular cylindrical shell with clamped–clamped edges. Composite Structures 94 (3):1075–86. doi:10.1016/j.compstruct.2011.11.004.
  • Zhang, W., D. M. Wang, and D. M. H. Yao. 2014. Using fourier differential quadrature method to analyze transverse nonlinear vibrations of an axially accelerating viscoelastic beam. Nonlinear Dynamics 78 (2):839–56. doi:10.1007/s11071-014-1481-3.
  • Zhao, J., and D. Pedroso. 2008. Strain gradient theory in orthogonal curvilinear coordinates. International Journal of Solids and Structures 45 (11–12):3507–20. doi:10.1016/j.ijsolstr.2008.02.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.