431
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Performance based design optimization of an intrinsically compliant 6-dof parallel robot

, , &
Pages 1237-1252 | Received 24 Sep 2019, Accepted 20 Mar 2020, Published online: 30 Mar 2020

References

  • Abdikenov, B., Z. Iklassov, A. Sharipov, S. Hussain, and P. K. Jamwal. 2019. Analytics of heterogeneous breast cancer data using neuroevolution. IEEE Access 7:18050–60. doi:10.1109/ACCESS.2019.2897078.
  • Albu-Schäffer, A., S. Haddadin, C. Ott, A. Stemmer, T. Wimböck, and G. Hirzinger. 2007. The DLR lightweight robot: Design and control concepts for robots in human environments. Industrial Robot: An International Journal 34 (5):376–85. doi:10.1108/01439910710774386.
  • Amare, Z., B. Zi, S. Qian, J. Du, and Q. J. Ge. 2018. Three-dimensional static and dynamic stiffness analyses of the cable driven parallel robot with non-negligible cable mass and elasticity. Mechanics Based Design of Structures and Machines 46 (4):455–82. doi:10.1080/15397734.2017.1358094.
  • Aubin, P. M., M. S. Cowley, and W. R. Ledoux. 2008. Gait simulation via a 6-DOF parallel robot with iterative learning control. IEEE Transactions on Biomedical Engineering 55 (3):1237–40. doi:10.1109/TBME.2007.908072.
  • Behzadipour, S., and A. Khajepour. 2006. Stiffness of cable-based parallel manipulators with application to stability analysis. Journal of Mechanical Design 128 (1):303–10. doi:10.1115/1.2114890.
  • Boudreau, R., and N. Turkkan. 1996. Solving the forward kinematics of parallel manipulators with a genetic algorithm. Journal of Robotic Systems 13 (2):111–25. doi:10.1002/(SICI)1097-4563(199602)13:2<111::AID-ROB4>3.0.CO;2-W.
  • Cazalilla, J., M. Vallés, A. Valera, V. Mata, and M. Díaz-Rodríguez. 2016. Hybrid force/position control for a 3-DOF 1T2R parallel robot: Implementation, simulations and experiments. Mechanics Based Design of Structures and Machines 44 (1–2):16–31. doi:10.1080/15397734.2015.1030679.
  • Choi, T. Y., B. S. Choi, and K. H. Seo. 2011. Position and compliance control of a pneumatic muscle actuated manipulator for enhanced safety. IEEE Transactions on Control Systems Technology 19 (4):832–42. doi:10.1109/TCST.2010.2052362.
  • Choi, T. Y., and J. J. Lee. 2010. Control of manipulator using pneumatic muscles for enhanced safety. IEEE Transactions on Industrial Electronics 57 (8):2815–25.
  • Chou, C. P., and B. Hannaford. 1996. Measurement and modeling of McKibben pneumatic artificial muscles. IEEE Transactions on Robotics and Automation 12 (1):90–102. doi:10.1109/70.481753.
  • Colbrunn, R. W., G. M. Nelson, and R. D. Quinn. 2001. Modeling of braided pneumatic actuators for robotic control. Proceedings of the International Conference on Intelligent Robots and Systems October 29th–November 3rd, 2001.
  • Dai, X., Q. Huang, H. Jiang, and H. Junwei. 2008. “Kinematics Analysis of a 3-dof Rotational Parallel Mechanism.” in 2008 International Workshop on Modelling, Simulation and Optimization. 404–407.
  • Dasgupta, B., and T. S. Mruthyunjaya. 2000. Stewart platform manipulator: A review. Mechanism and Machine Theory 35 (1):15–40. doi:10.1016/S0094-114X(99)00006-3.
  • Deb, K. 2004. Multi-objective optimization using evolutionary algorithms. John Wiley & sons, Ltd.
  • Deb, K., A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6 (2):182–97. doi:10.1109/4235.996017.
  • Feng, Y., H. Wang, H. Yan, X. Wang, Z. Jin, and L. Vladareanu. 2017. Research on safety and compliance of a new lower limb rehabilitation robot. Journal of Healthcare Engineering 2017:1–11. doi:10.55/2017/1523068.
  • Gattringer, H., R. Naderer, and H. Bremer. 2009. “Modeling and control of a pneumatically driven Stewart platform.” Motion and Vibration Control - Selected Papers from MOVIC 2008.
  • Gordon, K. E., G. S. Sawicki, and D. P. Ferris. 2006. Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosis. Journal of Biomechanics 39 (10):1832–41. doi:10.1016/j.jbiomech.2005.05.018.
  • Gosselin, C. M., and E. Lavoie. 1993. On the kinematic design of spherical three-degree-of-freedom parallel manipulators. The International Journal of Robotics Research 12 (4):394–402. doi:10.1177/027836499301200406.
  • Grossi, E., and A. A. Shabana. 2019. Deformation basis and kinematic singularities of constrained systems. Mechanics Based Design of Structures and Machines 47 (6):659–79. doi:10.1080/15397734.2019.1610972.
  • Huang, T., C. M. Gosselin, D. J. Whitehouse, and D. G. Chetwynd. 2003. Analytical approach for optimal design of a type of spherical parallel manipulator using dexterous performance indices. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 217 (4):447–56. In press. doi:10.1243/095440603321509720.
  • Hussain, S., S. Q. Xie, P. K. Jamwal, and J. Parsons. 2012. An intrinsically compliant robotic orthosis for treadmill training. Medical Engineering and Physics 34:1448–53. doi:10.1016/j.medengphy.2012.02.003.
  • Jamwal, P. K., and S. Hussain. 2016. Multicriteria design optimization of a parallel ankle rehabilitation robot: Fuzzy dominated sorting evolutionary algorithm approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems 46 (5):589–97. doi:10.1109/TSMC.2015.2478389.
  • Jamwal, P. K., S. Hussain, and S. Q. Xie. 2015. Three-stage design analysis and multicriteria optimization of a parallel ankle rehabilitation robot using genetic algorithm. IEEE Transactions on Automation Science and Engineering 12 (4):1433–46. doi:10.1109/TASE.2014.2331241.
  • Jamwal, P. K., S. Q. Xie, S. Hussain, and J. Parsons. 2014. An adaptive wearable parallel robot for the treatment of ankle injuries. IEEE/ASME Transactions on Mechatronics 19 (1):64–75. doi:10.1109/TMECH.2012.2219065.
  • Jamwal, P. K., S. Hussain, M. H. Ghayesh, and V. S. Rogozin. 2016. Impedance control of an intrinsically compliant parallel ankle rehabilitation robot. IEEE Transactions on Industrial Electronics 63 (6):3638–47. doi:10.1109/TIE.2016.2521600.
  • Khatami, S., and F. Sassani. 2002. Isotropic design optimization of robotic manipulators using a genetic algorithm method. IEEE International Symposium on Intelligent Control - Proceedings, Vancouver. doi:10.1109/ISIC.2002.1157824.
  • Khoa, L. D., D. Q. Truong, and K. K. Ahn. 2013. Synchronization controller for a 3-R planar parallel pneumatic artificial muscle (PAM) robot using modified ANFIS algorithm. Mechatronics 23 (4):462–79. doi:10.1016/j.mechatronics.2013.03.011.
  • Khoshnoodi, H., A. R. Hanzaki, and H. A. Talebi. 2018. Kinematics, singularity study and optimization of an innovative spherical parallel manipulator with large workspace. Journal of Intelligent & Robotic Systems 92 (2):309–21. doi:10.1007/s10846-017-0752-x.
  • Kobler, J. P., K. Nuelle, G. J. Lexow, T. S. Rau, O. Majdani, L. A. Kahrs, J. Kotlarski, and T. Ortmaier. 2016. Configuration optimization and experimental accuracy evaluation of a bone-attached, parallel robot for skull surgery. International Journal of Computer Assisted Radiology and Surgery 11 (3):421–36. doi:10.1007/s11548-015-1300-4.
  • Kurtz, R., and V. Hayward. 1992. Multiple-goal kinematic optimization of a parallel spherical mechanism with actuator redundancy. IEEE Transactions on Robotics and Automation 8 (5):644–51. doi:10.1109/70.163788.
  • Le, H. M., L. Cao, T. N. Do, and S. J. Phee. 2018. Design and modelling of a variable stiffness manipulator for surgical robots. Mechatronics 53:109–23. doi:10.1016/j.mechatronics.2018.05.012.
  • Lou, Y., Y. Zhang, R. Huang, X. Chen, and Z. Li. 2014. Optimization algorithms for kinematically optimal design of parallel manipulators. IEEE Transactions on Automation Science and Engineering 11 (2):574–84. doi:10.1109/TASE.2013.2259817.
  • Mehrjooee, O., S. F. Dehkordi, and M. Habibnejad Korayem. 2020. Dynamic modeling and extended bifurcation analysis of flexible-link manipulator. Mechanics Based Design of Structures and Machines 48 (1):87–110. doi:10.1080/15397734.2019.1665542.
  • Mohan, V., H. Chhabra, A. Rani, and V. Singh. 2019. An expert 2DOF fractional order fuzzy PID controller for nonlinear systems. Neural Computing and Applications 31 (8):4253–70. doi:10.1007/s00521-017-3330-z.
  • Nguyen, C. C., Z.-L. Zhou, S. S. Antrazi, and C. E. Campbell. Jr. 1991. Efficient computation of forward kinematics and Jacobian matrix of a Stewart platform-based manipulator. Conference Proceedings - IEEE SOUTHEASTCON.
  • Panda, S., D. Mishra, and B. B. Biswal. 2019. An approach for design optimization of 3R manipulator using Adaptive Cuckoo Search algorithm. Mechanics Based Design of Structures and Machines :1–26. doi:10.1080/15397734.2019.1675166.
  • Pusey, J., A. Fattah, S. Agrawal, and E. Messina. 2004. Design and workspace analysis of a 6-6 cable-suspended parallel robot. Mechanism and Machine Theory 39 (7):761–78. doi:10.1016/j.mechmachtheory.2004.02.010.
  • Sadjadian, H., and H. Taghirad. 2005. Comparison of different methods for computing the forward kinematics of a redundant parallel manipulator. Journal of Intelligent and Robotic Systems 44 (3):225–46. doi:10.1007/s10846-005-9006-4.
  • Saglia, J. A., N. G. Tsagarakis, J. S. Dai, and D. G. Caldwell. 2009. A high-performance redundantly actuated parallel mechanism for ankle rehabilitation. The International Journal of Robotics Research 28 (9):1216–27. doi:10.1177/0278364909104221.
  • Salisbury, J. K., and J. J. Craig. 1982. Articulated hands-force control and kinematic issues. The International Journal of Robotics Research 1 (1):4–17. doi:10.1177/027836498200100102.
  • Tsai, L.-W. 1999. Robot analysis: The mechanics of serial and parallel manipulators. John Wiley & Sons.
  • Tunc, L. T., and J. Shaw. 2016. Investigation of the effects of Stewart platform-type industrial robot on stability of robotic milling. International Journal of Advanced Manufacturing Technology :1–11. In press. doi:10.1007/s00170-016-8420-z.
  • Vallery, H., J. Veneman, E. van Asseldonk, R. Ekkelenkamp, M. Buss, and H. van Der Kooij. 2008. Compliant actuation of rehabilitation robots. IEEE Robotics & Automation Magazine 15 (3):60–9. doi:10.1109/MRA.2008.927689.
  • Vallés, M., P. Araujo-Gómez, V. Mata, A. Valera, M. Díaz-Rodríguez, Á. Page, and N. M. Farhat. 2018. Mechatronic design, experimental setup, and control architecture design of a novel 4 DoF parallel manipulator. Mechanics Based Design of Structures and Machines 46 (4):425–39. doi:10.1080/15397734.2017.1355249.
  • Veneman, J. F., R. Ekkelenkamp, R. Kruidhof, F. C. T. Van Der Helm, and H. Van Der Kooij. 2006. A series elastic- and bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots. The International Journal of Robotics Research 25 (3):261–81. doi:10.1177/0278364906063829.
  • Wang, J., S. Wang, J. Li, X. Ren, and R. M. Briggs. 2018. Development of a novel robotic platform with controllable stiffness manipulation arms for laparoendoscopic single-site surgery (LESS). International Journal of Medical Robotics and Computer Assisted Surgery 14 (1):e1838. doi:10.1002/rcs.1838.
  • Wapler, M., V. Urban, T. Weisener, J. Stallkamp, M. Dürr, and A. Hiller. 2003. A Stewart platform for precision surgery. Transactions of the Institute of Measurement and Control 25 (4):329–34. doi:10.1191/0142331203tm092oa.
  • Zhu, X., G. Tao, B. Yao, and J. Cao. 2008. Adaptive robust posture control of parallel manipulator driven by pneumatic muscles with redundancy. IEEE/ASME Transactions on Mechatronics 13 (4):441–50. doi:10.1109/TMECH.2008.2000825.
  • Zinn, M., O. Khatib, B. Roth, and J. K. Salisbury. 2004. Playing it safe. IEEE Robotics & Automation Magazine 11 (2):12–21. doi:10.1109/MRA.2004.1310938.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.