176
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Effect of graphene nanoplatelets addition on the elastic properties of short ceramic fiber-reinforced aluminum-based hybrid nanocomposites

, , , &
Pages 1417-1433 | Received 19 Dec 2019, Accepted 06 Apr 2020, Published online: 24 Apr 2020

References

  • Aboudi, J. 1983. The effective moduli of short-fiber composites. International Journal of Solids and Structures 19 (8):693–707. doi:10.1016/0020-7683(83)90065-3.
  • Aghadavoudi, F., H. Golestanian, and Y. Tadi Beni. 2018. Investigating the effects of CNT aspect ratio and agglomeration on elastic constants of crosslinked polymer nanocomposite using multiscale modeling. Polymer Composites 39 (12):4513–23. doi:10.1002/pc.24557.
  • Aghadavoudi, F., H. Golestanian, and K. A. Zarasvand. 2019. Elastic behaviour of hybrid cross-linked epoxy-based nanocomposite reinforced with GNP and CNT: Experimental and multiscale modelling. Polymer Bulletin 76 (8):4275–94. doi:10.1007/s00289-018-2602-9.
  • Barai, P., and G. J. Weng. 2011. A theory of plasticity for carbon nanotube reinforced composites. International Journal of Plasticity 27 (4):539–59. doi:10.1016/j.ijplas.2010.08.006.
  • Bhadauria, A., L. K. Singh, and T. Laha. 2018. Effect of physio-chemically functionalized graphene nanoplatelet reinforcement on tensile properties of aluminum nanocomposite synthesized via spark plasma sintering. Journal of Alloys and Compounds 748:783–93. doi:10.1016/j.jallcom.2018.03.186.
  • Bhadauria, A., L. K. Singh, and T. Laha. 2019. Combined strengthening effect of nanocrystalline matrix and graphene nanoplatelet reinforcement on the mechanical properties of spark plasma sintered aluminum based nanocomposites. Materials Science and Engineering: A 749:14–26. doi:10.1016/j.msea.2019.02.007.
  • Bisht, A., M. Srivastava, R. M. Kumar, I. Lahiri, and D. Lahiri. 2017. Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering. Materials Science and Engineering: A 695:20–8. doi:10.1016/j.msea.2017.04.009.
  • Boostani, A. F., S. Tahamtan, Z. Y. Jiang, D. Wei, S. Yazdani, R. A. Khosroshahi, R. Taherzadeh Mousavian, J. Xu, X. Zhang, and D. Gong. 2015. Enhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticles. Composites Part A: Applied Science and Manufacturing 68:155–63. doi:10.1016/j.compositesa.2014.10.010.
  • Carman, G. P., and K. L. Reifsnider. 1992. Micromechanics of short-fiber composites. Composites Science and Technology 43 (2):137–46. doi:10.1016/0266-3538(92)90004-M.
  • Chen, S., M. K. Hassanzadeh-Aghdam, and R. Ansari. 2018. An analytical model for elastic modulus calculation of SiC whisker-reinforced hybrid metal matrix nanocomposite containing SiC nanoparticles. Journal of Alloys and Compounds 767:632–41. doi:10.1016/j.jallcom.2018.07.102.
  • Dong, C. 2014. Mechanical and thermo-mechanical properties of carbon nanotube reinforced composites. International Journal of Smart and Nano Materials 5 (1):44–58. doi:10.1080/19475411.2014.896427.
  • Ebrahimi, F., M. Nouraei, and A. Dabbagh. 2020. Modeling vibration behavior of embedded graphene-oxide powder-reinforced nanocomposite plates in thermal environment. Mechanics Based Design of Structures and Machines 48 (2):217–24. doi:10.1080/15397734.2019.1660185.
  • El Moumen, A., M. Tarfaoui, and K. Lafdi. 2018. Computational homogenization of mechanical properties for laminate composites reinforced with thin film made of carbon nanotubes. Applied Composite Materials 25 (3):569–88. doi:10.1007/s10443-017-9636-2.
  • Esmailpoor Hajilak, Z., J. Pourghader, D. Hashemabadi, F. Sharifi Bagh, M. Habibi, and H. Safarpour. 2019. Multilayer GPLRC composite cylindrical nanoshell using modified strain gradient theory. Mechanics Based Design of Structures and Machines 47 (5):521–5. doi:10.1080/15397734.2019.1566743.
  • Fei, W. D., M. Hu, and C. K. Yao. 2003. Effects of thermal residual stress creeping on microstructure and tensile properties of SiC whisker reinforced aluminum matrix composite. Materials Science and Engineering: A 356 (1-2):17–22. doi:10.1016/S0921-5093(02)00827-4.
  • Hassanzadeh-Aghdam, M. K., R. Ansari, and A. Darvizeh. 2018. Micromechanical analysis of carbon nanotube-coated fiber-reinforced hybrid composites. International Journal of Engineering Science 130:215–29. doi:10.1016/j.ijengsci.2018.06.001.
  • Jain, V. K. S., K. U. Yazar, and S. Muthukumaran. 2019. Development and characterization of Al5083-CNTs/SiC composites via friction stir processing. Journal of Alloys and Compounds 798:82–92. doi:10.1016/j.jallcom.2019.05.232.
  • Jiang, Z., J. Lian, D. Yang, and S. Dong. 1998. An analytical study of the influence of thermal residual stresses on the elastic and yield behaviors of short fiber-reinforced metal matrix composites. Materials Science and Engineering: A 248 (1-2):256–75. doi:10.1016/S0921-5093(98)00509-7.
  • Kuang, J., P. Jiang, F. Ran, and W. Cao. 2016. Conductivity-dependent dielectric properties and microwave absorption of Al-doped SiC whiskers. Journal of Alloys and Compounds 687:227–31. doi:10.1016/j.jallcom.2016.06.168.
  • Kundalwal, S. I., and M. C. Ray. 2014. Effect of carbon nanotube waviness on the effective thermoelastic properties of a novel continuous fuzzy fiber reinforced composite. Composites Part B: Engineering 57:199–209. doi:10.1016/j.compositesb.2013.10.003.
  • Lee, C., X. Wei, J. W. Kysar, and J. Hone. 2008. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321 (5887):385–8. doi:10.1126/science.1157996.
  • Liu, F., P. Ming, and J. Li. 2007. Ab initio calculation of ideal strength and phonon instability of graphene under tension. Physical Review B 76 (6):064120. doi:10.1103/PhysRevB.76.064120.
  • Mital, S. K., P. L. Murthy, and R. K. Goldberg. 1997. Micromechanics for particulate-reinforced composites. Mechanics of Advanced Materials and Structures 4 (3):251–66. doi:10.1080/10759419708945883.
  • Mori, T., and K. Tanaka. 1973. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica 21 (5):571–4. doi:10.1016/0001-6160(73)90064-3.
  • Muley, A. V., S. Aravindan, and I. P. Singh. 2015. Nano and hybrid aluminum based metal matrix composites: An overview. Manufacturing Review 2 (:15–3. doi:10.1051/mfreview/2015018.
  • Nieto, A., A. Bisht, D. Lahiri, C. Zhang, and A. Agarwal. 2017. Graphene reinforced metal and ceramic matrix composites: A review. International Materials Reviews 62 (5):241–302. doi:10.1080/09506608.2016.1219481.
  • Pakseresht, M., R. Ansari, and M. K. Hassanzadeh-Aghdam. 2020. Laminate analogy approach for the effective elastic properties of metal matrix nanocomposites filled with randomly dispersed graphene nanoplatelets. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 1-8 234 (6):1212–9. doi:10.1177/0954406219888958.
  • Parizi, M. T., G. R. Ebrahimi, and H. R. Ezatpour. 2019. Effect of graphene nanoplatelets content on the microstructural and mechanical properties of AZ80 magnesium alloy. Materials Science and Engineering: A 742:373–89. doi:10.1016/j.msea.2018.11.025.
  • Rafiee, M., F. Nitzsche, and M. R. Labrosse. 2018. Modeling and mechanical analysis of multiscale fiber-reinforced graphene composites: Nonlinear bending, thermal post-buckling and large amplitude vibration. International Journal of Non-Linear Mechanics 103:104–12. doi:10.1016/j.ijnonlinmec.2018.05.004.
  • Rafiee, M. A., J. Rafiee, I. Srivastava, Z. Wang, H. Song, Z. Z. Yu, and N. Koratkar. 2010. Fracture and fatigue in graphene nanocomposites. Small 6 (2):179–83. doi:10.1002/smll.200901480.
  • Safarpour, M., A. Rahimi, A. Alibeigloo, H. Bisheh, and A. Forooghi. 2019. Parametric study of three-dimensional bending and frequency of FG-GPLRC porous circular and annular plates on different boundary conditions. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2019.1701491.
  • Şenel, M. C., M. Gürbüz, and E. Koc. 2018. Fabrication and characterization of synergistic Al-SiC-GNPs hybrid composites. Composites Part B: Engineering 154:1–9. doi:10.1016/j.compositesb.2018.07.035.
  • Shahgholian-Ghahfarokhi, D., G. Rahimi, A. Khodadadi, H. Salehipour, and M. Afrand. 2019. Buckling analyses of FG porous nanocomposite cylindrical shells with graphene platelet reinforcement subjected to uniform external lateral pressure. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2019.1704777.
  • Shahgholian-Ghahfarokhi, D., M. Safarpour, and A. Rahimi. 2019. Torsional buckling analyses of functionally graded porous nanocomposite cylindrical shells reinforced with graphene platelets (GPLs). Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2019.1666723.
  • Shahrdami, L., A. Sedghi, and M. H. Shaeri. 2019. Microstructure and mechanical properties of Al matrix nanocomposites reinforced by different amounts of CNT and SiCW. Composites Part B: Engineering 175:107081. doi:10.1016/j.compositesb.2019.107081.
  • Shin, S. E., and D. Bae. 2015. Deformation behavior of aluminum alloy matrix composites reinforced with few-layer graphene. Composites Part A: Applied Science and Manufacturing 78:42–7. doi:10.1016/j.compositesa.2015.08.001.
  • Shokrgozar, A., A. Ghabussi, F. Ebrahimi, M. Habibi, and H. Safarpour. 2020. Viscoelastic dynamics and static responses of a graphene nanoplatelets-reinforced composite cylindrical microshell. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2020.1719509.
  • Soldano, C., A. Mahmood, and E. Dujardin. 2010. Production, properties and potential of graphene. Carbon 48 (8):2127–50. doi:10.1016/j.carbon.2010.01.058.
  • Song, Y., Y. Chen, W. W. Liu, W. L. Li, Y. G. Wang, D. Zhao, and X. B. Liu. 2016. Microscopic mechanical properties of titanium composites containing multi-layer graphene nanofillers. Materials & Design 109:256–63. doi:10.1016/j.matdes.2016.07.077.
  • Turan, M. E. 2019. Investigation of mechanical properties of carbonaceous (MWCNT, GNPs and C60) reinforced hot-extruded aluminum matrix composites. Journal of Alloys and Compounds 788:352–60. doi:10.1016/j.jallcom.2019.02.253.
  • Uzun, A. 2019. Production of aluminium foams reinforced with silicon carbide and carbon nanotubes prepared by powder metallurgy method. Composites Part B: Engineering 172:206–17. doi:10.1016/j.compositesb.2019.05.045.
  • Yadav, B. N., D. Muchhala, P. Singh, A. C. Venkat, and D. P. Mondal. 2019. Synergic effect of MWCNTs and SiC addition on microstructure and mechanical properties of closed-cell Al–SiC-MWCNTs HCFs. Composites Part B: Engineering 172:458–71. doi:10.1016/j.compositesb.2019.05.041.
  • Yadav, B. N., G. Verma, D. Muchhala, R. Kumar, and D. P. Mondal. 2018. Effect of MWCNTs addition on the wear and compressive deformation behavior of LM13-SiC-MWCNTs hybrid composites. Tribology International 128:21–33. doi:10.1016/j.triboint.2018.07.013.
  • Zhang, X., S. Li, D. Pan, B. Pan, and K. Kondoh. 2018. Microstructure and synergistic-strengthening efficiency of CNTs-SiCp dual-nano reinforcements in aluminum matrix composites. Composites Part A: Applied Science and Manufacturing 105:87–96. doi:10.1016/j.compositesa.2017.11.013.
  • Zhang, X. N., L. Geng, and G. S. Wang. 2003. Microstructure and tensile properties of Al hybrid composites reinforced with SiC whiskers and SiC nanoparticles. Key Engineering Materials 249:277–82. doi:10.4028/www.scientific.net/KEM.249.277.
  • Zhang, W., X. Ma, and D. Ding. 2017. Aging behavior and tensile response of a SiCw reinforced eutectoid zinc-aluminium-copper alloy matrix composite. Journal of Alloys and Compounds 727:375–81. doi:10.1016/j.jallcom.2017.08.130.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.