372
Views
4
CrossRef citations to date
0
Altmetric
Articles

6AP wheel: A new transformable robotic wheel for traction force improvement and halting avoidance of a UGV on soft terrains

, &
Pages 3370-3385 | Received 06 Sep 2019, Accepted 05 Aug 2020, Published online: 28 Aug 2020

References‏

  • Azimi, A., J. Kövecses, and J. Angeles. 2013. Wheel–soil interaction model for rover simulation and analysis using elastoplasticity theory. IEEE Transactions on Robotics 29 (5):1271–88. doi:10.1109/TRO.2013.2267972.
  • Bekker, M. G. 1956. Theory of land locomotion. Ann Arbor, MI: University of Michigan Press.
  • Bernstein, R. 1913. Probleme zur experimentellen Motorpflugmechanik. DerMotorwagen 16 (9):199–206.
  • Board, S. S., and National Research Council. 2006. An assessment of balance in NASA's science programs. Washington, DC: National Academies Press.
  • Carlson, J., and R. R. Murphy. 2005. How UGVs physically fail in the field. IEEE Transactions on Robotics 21 (3):423–37. doi:10.1109/TRO.2004.838027.
  • Chen, S. C., K. J. Huang, W. H. Chen, S. Y. Shen, C. H. Li, and P. C. Lin. 2014. Quattroped: A leg-wheel transformable robot. IEEE/ASME Transactions on Mechatronics 19 (2):730–42. doi:10.1109/TMECH.2013.2253615.
  • Comin, F. J., and C. M. Saaj. 2017. Models for slip estimation and soft terrain characterization with multi-legged wheel–legs. IEEE Transactions on Robotics 33 (6):1438–52. doi:10.1109/TRO.2017.2723904.
  • Ding, L., H. Yang, H. Gao, N. Li, Z. Deng, J. Guo, and N. Li. 2017. Terramechanics-based modeling of sinkage and moment for in-situ steering wheels of mobile robots on deformable terrain. Mechanism and Machine Theory 116:14–33. doi:10.1016/j.mechmachtheory.2017.05.011.
  • Durst, P. J., G. Monroe, C. L. Bethel, D. T. Anderson, and D. W. Carruth. 2018. A history and overview of mobility modeling for autonomous unmanned ground vehicles. Proc. SPIE 10643, Autonomous Systems: Sensors, Vehicles, Security, and the Internet of Everything, 106430G, International Society for Optics and Photonics, Orlando, FL, United States, May 3.‏ doi:10.1117/12.2309570.
  • Ebrahimi, S., and A. Mardani. 2017. Terramechanics-based performance enhancement of the wide robotic wheel on the soft terrains, Part I: Wheel shape optimization. The 4th IEEE International Conference on Robotics and Mechatronics, Amirkabir University of Technology, Tehran, Iran, October 24–27. doi:10.1109/ICRoM.2017.8466134.
  • Ebrahimi, S., and A. Mardani. 2019. A new resistive belt sensor for multipoint contact detection of robotic wheels. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering 43 (S1):399–414‏. doi:10.1007/s40997-018-0166-9.
  • Ebrahimi, S., and A. Mardani. 2018. Obstacle climbing improvement of wheeled mobile robots with extendable bodies. ‏The 5th Joint International Conference on Multibody System Dynamics (IMSD), Lisbon, Portugal, June 24–8.
  • Ebrahimi, S., and A. Mardani. 2019. Expanding scissor-based UGV for large obstacles climbing. Mechanics Based Design of Structures and Machines 47 (1):20–36. doi:10.1080/15397734.2018.1487845.
  • Ebrahimi, S., A. Mardani, and K. Alipour. 2020. A new sensor for robotic mars rovers in sandy terrains predicting critical soil flow using the spiral soil flow model. Robotica 1–20. doi:10.1017/S0263574720000405.
  • Ganesan, G., and M. Sekar. 2017. Optimal synthesis and kinematic analysis of adjustable four-bar linkages to generate filleted rectangular paths. Mechanics Based Design of Structures and Machines 45 (3):363–79. doi:10.1080/15397734.2016.1217780.
  • Gonzalez, R., and K. Iagnemma. 2018. Slippage estimation and compensation for planetary exploration rovers. State of the art and future challenges. Journal of Field Robotics 35 (4):564–77. doi:10.1002/rob.21761.
  • Krenn, R., and A. Gibbesch. 2011. Soft soil contact modeling technique for multi-body system simulation. In Trends in computational contact mechanics, eds. G. Zavarise and P. Wriggers, 135–55. Berlin, Heidelberg: Springer.
  • Korkmaz, K., Y. Akgün, and F. Maden. 2012. Design of a 2-DoF 8R linkage for transformable hypar structure. Mechanics Based Design of Structures and Machines 40 (1):19–32. doi:10.1080/15397734.2011.590775.
  • Mardani, A., and S. Ebrahimi. 2017. Simultaneous surface scanning and stability analysis of wheeled mobile robots using a new spatial sensitive shield sensor. Robotics and Autonomous Systems 98:1–14. ‏doi:10.1016/j.robot.2017.08.007.
  • Mardani, A., and S. Ebrahimi. 2017. Terramechanics-based performance enhancement of the wide robotic wheel on the soft terrains, Part II: Torque control of the optimized wheel. The 4th IEEE International Conference on Robotics and Mechatronics, Amirkabir University of Technology, Tehran, Iran, October 24–27. doi:10.1109/ICRoM.2017.8466156.
  • Mardani, A., S. Ebrahimi, and K. Alipour. 2020. New adaptive segmented wheel for locomotion improvement of field robots on soft terrain. Journal of Intelligent & Robotic Systems 97 (3–4):695–717. doi:10.1007/s10846-019-01059-1.
  • Schäfer, B., A. Gibbesch, R. Krenn, and B. Rebele. 2010. Planetary rover mobility simulation on soft and uneven terrain. Vehicle System Dynamics 48 (1):149–69. doi:10.1080/00423110903243224.
  • Senatore, C., N. Stein, F. Zhou, K. Bennett, R. Arvidson, B. Trease, R. Lindemann, P. Bellutta, M. Heverly, and K. Iagnemma. 2014. Modeling and validation of mobility characteristics of the Mars Science Laboratory Curiosity Rover. In 12th International Symposium on Artificial Intelligence, Robotics and Automation in Space (I-SAIRAS),‏ Montreal, June 17–19.
  • Spong, M. W., S. Hutchinson, and M. Vidyasagar. 2006. Robot modeling and control.‏ New York: John Wiley & Sons Press.
  • Tarasenko, M. V. 1994. Transformation of the soviet space program after the cold war. Science & Global Security 4 (3):339–61. doi:10.1080/08929889408426406.
  • Wong, J. Y. 2009. Terramechanics and off-road vehicle engineering: Terrain behaviour, off-road vehicle performance and design. Oxford: Butterworth-Heinemann press.
  • Yellowhorse, A., and L. L. Howell. 2018. Deployable lenticular stiffeners for origami-inspired mechanisms. Mechanics Based Design of Structures and Machines 46 (5):634–49. doi:10.1080/15397734.2017.1406370.
  • Zhao, Y., X. Wang, Q. Li, D. Wang, and Y. Cai. 2019. A high-accuracy autonomous navigation scheme for the Mars rover. Acta Astronautica 154:18–32. doi:10.1016/j.actaastro.2018.10.036.
  • Zeng, W., F. Gao, H. Jiang, C. Huang, J. Liu, and H. Li. 2018. Design and analysis of a compliant variable-diameter mechanism used in variable-diameter wheels for lunar rover. Mechanism and Machine Theory 125:240–58. doi:10.1016/j.mechmachtheory.2018.03.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.