370
Views
13
CrossRef citations to date
0
Altmetric
Articles

Bending analysis of functionally graded sandwich plates using HOZT including transverse displacement effects

ORCID Icon, &
Pages 3563-3577 | Received 19 Jun 2020, Accepted 20 Aug 2020, Published online: 10 Sep 2020

References

  • Ansari, M. I., and A. Kumar. 2019. Bending analysis of functionally graded CNT reinforced doubly curved singly ruled truncated rhombic cone. Mechanics Based Design of Structures and Machines 47 (1):67–86. doi:10.1080/15397734.2018.1519635.
  • Arefi, M., and A. H. S. Arani. 2018. Higher-order shear deformation bending results of a magneto-electro-thermo-elastic functionally graded nanobeams in thermal, mechanical, electrical and magnetic environments. Mechanics Based Design of Structures and Machines 46 (6):669–92. doi: 10.1080/15397734.2018.1434002.
  • Brischetto, S. 2009. Classical and mixed advanced models for sandwich plates embedding functionally graded cores. Journal of Mechanics of Materials and Structures 4 (1):13–33. doi: 10.2140/jomms.2009.4.13.
  • Carrera, E., S. Brischetto, M. Cinefra, and M. Soave. 2011. Effects of thickness stretching in functionally graded plates and shells. Composites Part B: Engineering 42 (2):123–33. doi: 10.1016/j.compositesb.2010.10.005.
  • Civalek, Ö., and C. Demir. 2016. A simple mathematical model of microtubules surrounded by an elastic matrix by nonlocal finite element method. Applied Mathematics and Computation 289:335–52. doi: 10.1016/j.amc.2016.05.034.
  • Civalek, Ö., and A. Yavas. 2006. Large deflection static analysis of rectangular plates on two parameter elastic foundations. International Journal of Science and Technology 1 (1):43–50.
  • Demir, C., and Ö. Civalek. 2017. A new nonlocal FEM via Hermitian cubic shape functions for thermal vibration of nano beams surrounded by an elastic matrix. Composite Structures 168:872–84. doi: 10.1016/j.compstruct.2017.02.091.
  • Di Sciuva, M., and M. Sorrenti. 2019. Bending and free vibration analysis of functionally graded sandwich plates: An assessment of the refined zigzag theory. Journal of Sandwich Structures and Materials 0 (0):1–43. doi: 10.1177/1099636219843970.
  • Dorduncu, M. 2020. Stress analysis of sandwich plates with functionally graded cores using peridynamic differential operator and refined zigzag theory. Thin-Walled Structures 146:106468. doi: 10.1016/j.tws.2019.106468.
  • Ebrahimi, F., M. R. Barati, and Ö. Civalek. 2020. Application of Chebyshev–Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures. Engineering with Computers 36 (3):953–64. doi: 10.1007/s00366-019-00742-z.
  • Garg, A., and H. D. Chalak. 2019. A review on analysis of laminated composite and sandwich structures under hygrothermal conditions. Thin-Walled Structures 142:205–26. doi: 10.1016/j.tws.2019.05.005.
  • Garg, A., and H. D. Chalak. 2020. Analysis of non-skew and skew laminated composite and sandwich plates under hygro-thermo-mechanical conditions including transverse stress variations. Journal of Sandwich Structures and Materials. doi: 10.1177/1099636220932782.
  • Gulshan Taj, M. N. A., A. Chakrabarti, and M. Talha. 2014. Bending analysis of functionally graded skew sandwich plates with through the thickness displacement variations. Journal of Sandwich Structures & Materials 16 (2):210–48. doi: 10.1177/1099636213512499.
  • Hanifeh, R., and A. M. Fattahi. 2020. A micromechanical model for overlapped short platelet-reinforced composites. Mechanics Based Design of Structures and Machines doi: 10.1080/15397734.2020.1784206.
  • Jha, D. K., T. Kant, and R. K. Singh. 2013. A critical review of recent research on functionally graded plates. Composite Structures 96:833–49. doi: 10.1016/j.compstruct.2012.09.001.
  • Kashtalyan, M., and M. Menshykova. 2009. Three-dimensional elasticity solution for sandwich panels with a functionally graded core. Composite Structures 87 (1):36–43. doi: 10.1016/j.compstruct.2007.12.003.
  • Liew, K. M., X. Zhao, and A. J. M. Ferreira. 2011. A review of meshless methods for laminated and functionally graded plates and shells. Composite Structures 93 (8):2031–41. doi: 10.1016/j.compstruct.2011.02.018.
  • Murakami, H. 1986. Laminated composite plate theory with improved in-plane responses. Journal of Applied Mechanics 53 (3):661–6. doi: 10.1115/1.3171828.
  • Neves, A. M. A., A. J. M. Ferreira, E. Carrera, M. Cinefra, R. M. N. Jorge, and C. M. M. Soares. 2012. Static analysis of functionally graded sandwich plates according to a hyperbolic theory considering zig-zag and warping effects. Advances in Engineering Software 52:30–43. doi: 10.1016/j.advengsoft.2012.05.005.
  • Neves, A. M. A., A. J. M. Ferreira, E. Carrera, M. Cinefra, R. M. N. Jorge, C. M. M. Soares, and A. L. Araujo. 2017. Influence of zigzag and warping effects on buckling of functionally graded sandwich plates according to sinusoidal shear deformation theories. Mechanics of Advanced Materials and Structures 24 (5):360–76. doi: 10.1080/15376494.2016.1191095.
  • Neves, A. M. A., A. J. M. Ferreira, E. Carrera, M. Cinefra, C. M. C. Roque, R. M. N. Jorge, and C. M. M. Soares. 2013. Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique. Composites Part B: Engineering 44 (1):657–74. doi: 10.1016/j.compositesb.2012.01.089.
  • Panda, S. K., and B. N. Singh. 2013. Thermal postbuckling behavior of laminated composite spherical shell panel using NFEM. Mechanics Based Design of Structures and Machines 41 (4):468–88. doi: 10.1080/15397734.2013.797330.
  • Pandey, S., and S. Pradyumna. 2018. Analysis of functionally graded sandwich plates using a higher-order layerwise theory. Composites Part B: Engineering 153:325–36. doi: 10.1016/j.compositesb.2018.08.121.
  • Swaminathan, K., D. T. Naveenkumar, A. M. Zenkour, and E. Carrera. 2015. Stress, vibration and buckling analyses of FGM plates – A state-of-the-art review. Composite Structures 120:10–31. doi: 10.1016/j.compstruct.2014.09.070.
  • Swaminathan, K., and D. M. Sangeetha. 2017. Thermal analysis of FGM plates – A critical review of various modeling techniques and solution methods. Composite Structures 160:43–60. doi: 10.1016/j.compstruct.2016.10.047.
  • Thai, H.-T., and S.-E. Kim. 2015. A review of theories for the modeling and analysis of functionally graded plates and shells. Composite Structures 128:70–86. doi: 10.1016/j.compstruct.2015.03.010.
  • Tornabene, F. 2009. Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution. Computer Methods in Applied Mechanics and Engineering 198 (37–40):2911–35. doi: 10.1016/j.cma.2009.04.011.
  • Tornabene, F., and J. N. Reddy. 2013. FGM and laminated doubly-curved and degenerate shells resting on nonlinear elastic foundations: A GDQ solution for static analysis with a posteriori stress and strain recovery. World Journal of Mechanics 93 (4):635–88.
  • Tornabene, F., N. Fantuzzi, M. Bacciocchi, and E. Viola. 2018. Mechanical behavior of damaged laminated composite plates ad shells: Higher-order shear deformation theories. Composite Structures 189:304–29. doi: 10.1016/j.compstruct.2018.01.073.
  • Tornabene, F., and S. Brischetto. 2018. 3D capability of refined GDQ models for the bending analysis of composite and sandwich plates, spherical and doubly-curved shells. Thin-Walled Structures 129:94–124. doi: 10.1016/j.tws.2018.03.021.
  • Zenkour, A. M. 2005. A comprehensive analysis of functionally graded sandwich plates: Part 1-Deflection and stresses. International Journal of Solids and Structures 42 (18–19):5224–42. doi: 10.1016/j.ijsolstr.2005.02.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.