388
Views
3
CrossRef citations to date
0
Altmetric
Articles

Time domain flutter analysis of bend-twist coupled large composite wind turbine blades: a parametric study

, &
Pages 4048-4070 | Received 02 Jul 2020, Accepted 14 Sep 2020, Published online: 29 Sep 2020

References

  • Bouzidi, I., A. Hadjoui, and A. Fellah. 2020. Dynamic analysis of functionally graded rotor-blade system using classical version of the finite element method. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2019.1706558.
  • Carrión, M., R. Steijl, M. Woodgate, G. N. Barakos, X. Munduate, and S. Gomez-Iradi. 2014. Aeroelastic analysis of wind turbines using a tightly coupled CFD-CSD method. Journal of Fluids and Structures 50:392–415. doi:10.1016/j.jfluidstructs.2014.06.029.
  • Cheng, J., H. Xu, and A. Yan. 2006. Frequency analysis of a rotating cantilever beam using assumed mode method with coupling effect. Mechanics Based Design of Structures and Machines 34 (1):25–47. doi:10.1080/15367730500501587.
  • Farsadi, T., and A. Kayran. 2016. Aeroelastic instability analysis of composite rotating blades based on Loewy’s and Theodorsen’s unsteady aerodynamics. The 2016 World Congress on Advances in Civil Environmental, and Materials Research.
  • Glauert, H. 1930. The force and moment on an oscillating aerofoil. Berlin: Springer.
  • Griffin, D. A. 2001. WindPACT turbine design scaling studies technical area 1—Composite blades for 80-to 120-meter rotor. National Renewable Energy Laboratory NREL/SR-500.
  • Griffith, D. T., and T. D. Ashwill. 2011. The Sandia 100-meter all-glass baseline wind turbine blade: SNL 100-00. Sandia National Laboratories Technical Report SAND2011-3779.
  • Ha, S. K., K. Hayat, and L. Xu. 2014. Effect of shallow-angled skins on the structural performance of the large-scale wind turbine blade. Renewable Energy. 71:100–12. doi:10.1016/j.renene.2014.05.023.
  • Hafeez, M. M. A., and A. A. El-Badawy. 2018. Flutter limit investigation for a horizontal axis wind turbine blade. Journal of Vibration and Acoustics 140 (4):041014. doi:10.1115/1.4039402.
  • Hansen, M. H. 2004. Stability analysis of three-bladed turbines using an eigenvalue approach. In: 42nd AIAA Aerospace sciences meeting and exhibit, Proceedings of the ASME Wind Energy Symposium, Reno, Nevada. doi:10.2514/6.2004-505.
  • Hansen, M. H. 2007. Aeroelastic instability problems for wind turbine blade. Wind Energy 10 (6):551–77. doi:10.1002/we.242.
  • Hansen, M. O. L. 2013. Aerodynamics of wind turbines, 2nd ed. Abingdon, Oxon: Routledge. doi:10.4324/9781849770408.
  • Hauptmann, S., M. Bülk, L. Schön, S. Erbslöh, K. Boorsma, F. Grasso, M. Kühn, and P. W. Cheng. 2014. Comparison of the lifting-line free vortex wake method and the blade-element-momentum theory regarding the simulated loads of multi-MW wind turbines. Journal of Physics: Conference Series 555:012050. doi:10.1088/1742-6596/555/1/012050.
  • Hayat, K., and S. K. Ha. 2015. Flutter performance of large-scale wind turbine blade with shallow-angled skin. Composite Structures 132:575–83. doi:10.1016/j.compstruct.2015.05.073.
  • Hayat, K., A. G. M. de Lecea, C. D. Moriones, and S. K. Ha. 2016. Flutter performance of bend-twist coupled large-scale wind turbine blades. Journal of Sound and Vibration 370:149–62. doi:10.1016/j.jsv.2016.01.032.
  • Hodges, E. H., and E. H. Dowell. 1974. Nonlinear equation of motion for elastic bending and torsion of twisted non-uniform blades. NASA TND 7818.
  • Hong, C. H., and I. Chopra. 1985. Aeroelastic stability analysis of a composite rotor blade. Journal of the American Helicopter Society 30 (2):57–67. doi:10.1109/ICMSAO.2013.6552604.
  • Howison, J., J. Thomas, and K. Ekici. 2018. Aeroelastic analysis of a wind turbine blade using the harmonic balance method. Wind Energy 21 (4):226–41. doi:10.1002/we.2157.
  • Jeong, M. S., I. Lee, S. J. Yoo, and K. C. Park. 2013. Torsional stiffness effects on the dynamics stability of a horizontal axis wind turbine blade. Energies 6 (4):2242–61. doi:10.3390/en6042242.
  • Jonkman, J. M., S. Butterfield, W. Musial, and G. Scott. 2009. Definition of a 5-MW reference wind turbine for offshore system development. Technical Report NREL/TP.
  • Kar, R. C., and T. Sujata. 1991. Dynamic stability of a rotating beam with various boundary conditions. Computers & Structures 40 (3):753–73. doi:10.1016/0045-7949(91)90243-F.
  • Leble, V., and G. Barakos. 2016. Demonstration of a coupled floating offshore wind turbine analysis with high-fidelity methods. Journal of Fluids and Structures 62:272–93. doi:10.1016/j.jfluidstructs.2016.02.001.
  • Lobitz, D. W. 2004. Aeroelastic stability predictions for MW-sized wind turbine blades. Wind Energy 7 (3):211–24. doi:10.1002/we.120.
  • Lobitz, D. W., and P. S. Veers. 1998. Aeroelastic behavior of twist-coupled HAWT blades. Proceedings of the ASME/AIAA Wind Energy Symposium, Reno, Nevada. doi:10.2514/6.1998-29.
  • Meng, F. 2011. Aeroelastic stability analysis for large-scale wind turbines. PhD thesis dissertation, TU Delft.
  • Natori, M., and S. Nemat-Nasser. 1986. Application of a mixed variational approach to aeroelastic stability analysis of a nonuniform blade. Journal of Structural Mechanics 14 (1):5–31. doi:10.1080/03601218608907508.
  • Owens, B. C., D. T. Griffith, B. R. Resor, and J. E. Hurtado. 2013. Impact of modeling approach on flutter predictions for very large blade designs. Proceedings of the American Helicopter Society 69th Annual Forum, Phoenix, AZ.
  • Øye, S. 1991. Dynamic stall, simulated as a time lag of separation. In Proceedings of the 4th IEA Symposium on the Aerodynamics of Wind Turbines, ed. K. F. McAnulty.
  • Pourazarm, P., Y. M. Sadeghi, and M. A. Lackner. 2016. A parametric study of coupled-mode flutter for MW-size wind turbine blades. Wind Energy 19 (3):497–514. doi:10.1002/we.1847.
  • Resor, B. R. 2013. Definition of a 5 MW/61.5 m wind turbine blade reference model. Sandia National Laboratories Technical Report SAND2013-2569.
  • Rinker, J., and K. Dykes. 2018. WindPACT Reference Wind Turbines. Nrel/Tp 5000–67667.
  • Shakya, P., M. R. Sunny, and D. K. Maiti. 2019. A parametric study of flutter behavior of a composite wind turbine blade with bend-twist coupling. Composite Structures 207:764–75. doi:10.1016/j.compstruct.2018.09.064.
  • Silva, C. T., and M. V. Donadon. 2013. Unsteady blade element-momentum method including returning wake effects. Journal of Aerospace Technology and Management 5 (1):27–42. doi:10.5028/jatm.v5i1.163.
  • Snel, H., and J. G. Schepers. 1995. Joint investigation of dynamic inflow effects and implementation of an engineering method. ECN-C. Netherlands Energy Research Foundation.
  • Stablein, A. R., M. H. Hansen, and D. R. Verelst. 2017. Modal properties and stability of bend-twist coupled wind turbine blade. Wind Energy Science 2 (1):343–60. doi:10.5194/wes-2-343-2017.
  • Tangler, J. L. 1982. Comparison of wind turbine performance prediction and measurement. Journal of Solar Energy Engineering 104 (2):84–8. doi:10.1115/1.3266290.
  • Xiao, S., B. Chen, and Q. Du. 2005. On dynamic behavior of a cantilever beam with tip mass in a centrifugal field. Mechanics Based Design of Structures and Machines 33 (1):79–98. doi:10.1081/SME-200048325.
  • Xudong, W., W. Z. Shen, W. J. Zhu, J. N. Sorensen, and C. Jin. 2009. Shape optimization of wind turbine blades. Wind Energy 12 (8):781–803. doi:10.1002/we.335.
  • Zhou, X., K. Huang, and Z. Li. 2018. Effects of bend-twist coupling on flutter limits of composite wind turbine blades. Composite Structures 192:317–26. doi:10.1016/j.compstruct.2018.02.071.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.