414
Views
10
CrossRef citations to date
0
Altmetric
Articles

Large deformation of hyperelastic thick-walled vessels under combined extension-torsion-pressure: analytical solution and FEM

ORCID Icon, & ORCID Icon
Pages 4139-4156 | Received 26 Mar 2020, Accepted 18 Sep 2020, Published online: 01 Oct 2020

References

  • Almasi, A., M. Baghani, and A. Moallemi. 2017. Thermomechanical analysis of hyperelastic thick-walled cylindrical pressure vessels, analytical solutions and FEM. International Journal of Mechanical Sciences 130:426–36. doi: 10.1016/j.ijmecsci.2017.06.033.
  • Argeso, H. 2012. Analytical solutions to variable thickness and variable material property rotating disks for a new three-parameter variation function. Mechanics Based Design of Structures and Machines 40 (2):133–52. doi: 10.1080/15397734.2011.611459.
  • Bagheri, A., D. Taghizadeh, and H. Darijani. 2016. On the behavior of rotating thick-walled cylinders made of hyperelastic materials. Meccanica 51 (3):673–92. doi: 10.1007/s11012-015-0233-x.
  • Balcazara, J., and E. Paules. 2011. Elastomers: Types, properties, and applications. Hauppauge, NY: Nova Science Publishers, Inc.
  • Baniasadi, M., P. Fareghi, F. Darijani, and M. Baghani. 2020. Finite strain relaxation and creep in coupled axial and torsional deformation. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2020.1785311.
  • Batra, R. 1980. Finite plane strain deformations of rubberlike materials. International Journal for Numerical Methods in Engineering 15 (1):145–56. doi: 10.1002/nme.1620150112.
  • Batra, R. 2006. Torsion of a functionally graded cylinder. AIAA Journal 44 (6):1363–5. doi: 10.2514/1.19555.
  • Batra, R., and A. Bahrami. 2009. Inflation and eversion of functionally graded non-linear elastic incompressible circular cylinders. International Journal of Non-Linear Mechanics 44 (3):311–23. doi: 10.1016/j.ijnonlinmec.2008.12.005.
  • Behroozinia, P., S. Taheri, and R. Mirzaeifar. 2018. An investigation of intelligent tires using multiscale modeling of cord-rubber composites. Mechanics Based Design of Structures and Machines 46 (2):168–83. doi: 10.1080/15397734.2017.1321488.
  • Boresi, A. P., R. J. Schmidt, O. M. Sidebottom, et al. 1985. Advanced mechanics of materials. New York: Wiley.
  • Breslavsky, I. D., M. Amabili, M. Legrand, and F. Alijani. 2016. Axisymmetric deformations of circular rings made of linear and Neo-Hookean materials under internal and external pressure: A benchmark for finite element codes. International Journal of Non-Linear Mechanics 84:39–45. doi: 10.1016/j.ijnonlinmec.2016.04.011.
  • Chadwick, P., C. Creasy, and V. Hart. 1977. The deformation of rubber cylinders and tubes by rotation. The ANZIAM Journal 20 (1):62–96.
  • Darijani, H., R. Naghdabadi, and M. H. Kargarnovin. 2010. Constitutive modeling of rubberlike materials based on consistent strain energy density functions. Polymer Engineering & Science 50 (5):1058–66. doi: 10.1002/pen.21605.
  • Dragoni, E., and G. Scirè Mammano. 2018. Modeling and simulation of a compact push–pull rubber actuator energized by an outer coil of shape memory wire. Mechanics Based Design of Structures and Machines 46 (5):578–90. doi: 10.1080/15397734.2017.1372780.
  • Drozdov, A. D., S. Clyens, and N. Theilgaard. 2013. Multi-cycle deformation of silicone elastomer: Observations and constitutive modeling with finite strains. Meccanica 48 (8):2061–74. doi: 10.1007/s11012-013-9725-8.
  • Eraslan, A. N., and T. Akis. 2006. The stress response of partially plastic rotating FGM hollow shafts: Analytical treatment for axially constrained ends. Mechanics Based Design of Structures and Machines 34 (3):241–60. doi: 10.1080/15397730600779285.
  • Gent, A. 1996. A new constitutive relation for rubber. Rubber Chemistry and Technology 69 (1):59–61. doi: 10.5254/1.3538357.
  • Guo, X. 2001. Large deformation analysis for a cylindrical hyperelastic membrane of rubber-like material under internal pressure. Rubber Chemistry and Technology 74 (1):100–15. doi: 10.5254/1.3547631.
  • Hasheminejad, S. M., V. Rabbani, and M. Alaei-Varnosfaderani. 2016. Active transient elasto-acoustic response damping of a thick-walled liquid-coupled piezolaminated cylindrical vessel. Mechanics Based Design of Structures and Machines 44 (3):189–211. doi: 10.1080/15397734.2015.1048461.
  • Hibbeler, R. C. 1993. Statics and mechanics of materials. New York, NY: Macmillan Publishing.
  • Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. 2000. A new constitutive framework for arterial wall mechanics and a comparative study of material models. Journal of Elasticity 61 (1/3):1–48. doi: 10.1023/A:1010835316564.
  • Horgan, C. O., and J. G. Murphy. 2011. Extension and torsion of incompressible non-linearly elastic solid circular cylinders. Mathematics and Mechanics of Solids 16 (5):482–91. doi: 10.1177/1081286510387720.
  • Horgan, C. O., and G. Saccomandi. 1999. Simple torsion of isotropic, hyperelastic, incompressible materials with limiting chain extensibility. Journal of Elasticity 56 (2):159–70. doi: 10.1023/A:1007606909163.
  • Horgan, C., and G. Saccomandi. 2001. Large deformations of a rotating solid cylinder for non-Gaussian isotropic, incompressible hyperelastic materials. Journal of Applied Mechanics 68 (1):115–7. doi: 10.1115/1.1349418.
  • Humphrey, J. D. 2002. Cardiovascular solid mechanics: Cells, tissues, and organs. New York, NY: Springer-Verlag.
  • Humphrey, J., R. Barazotto, Jr, and W. Hunter. 1992. Finite extension and torsion of papillary muscles: A theoretical framework. Journal of Biomechanics 25 (5):541–7. doi: 10.1016/0021-9290(92)90094-h.
  • James, A. G., A. Green, and G. Simpson. 1975. Strain energy functions of rubber. I. Characterization of gum vulcanizates. Journal of Applied Polymer Science 19 (7):2033–58. doi: 10.1002/app.1975.070190723.
  • Kanner, L. M., and C. O. Horgan. 2008. On extension and torsion of strain-stiffening rubber-like elastic circular cylinders. Journal of Elasticity 93 (1):39–61. [Database] doi: 10.1007/s10659-008-9164-2.
  • Mansouri, M., and H. Darijani. 2014. Constitutive modeling of isotropic hyperelastic materials in an exponential framework using a self-contained approach. International Journal of Solids and Structures 51 (25/26):4316–26. doi: 10.1016/j.ijsolstr.2014.08.018.
  • Mansouri, M.,. H. Darijani, and M. Baghani. 2017. On the correlation of FEM and experiments for hyperelastic elastomers. Experimental Mechanics 57 (2):195–206. doi: 10.1007/s11340-016-0236-0.
  • Merodio, J., and R. W. Ogden. 2016. Extension, inflation and torsion of a residually stressed circular cylindrical tube. Continuum Mechanics and Thermodynamics 28 (1-2):157–74. doi: 10.1007/s00161-015-0411-z.
  • Ogden, R. W. 1972. Large deformation isotropic elasticity–on the correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 326 (1567):565–84.
  • Ogden, R., and P. Chadwick. 1972. On the deformation of solid and tubular cylinders of incompressible isotropic elastic material. Journal of the Mechanics and Physics of Solids 20 (2):77–90. doi: 10.1016/0022-5096(72)90032-4.
  • Rivlin, R. 1948. Large elastic deformations of isotropic materials IV. Further developments of the general theory. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 241 (835):379–97.
  • Sheikhi, S.,. M. Shojaeifard, and M. Baghani. 2019. Finite Bending and straightening of hyperelastic materials: Analytical solution and FEM. International Journal of Applied Mechanics 11 (09):1950084. doi: 10.1142/S1758825119500844.
  • Shi, P. 2016. Cylindrical interface crack in a hollow layered functionally graded cylinder under static torsion. Mechanics Based Design of Structures and Machines 44 (3):250–69. doi: 10.1080/15397734.2015.1053608.
  • Shojaeifard, M., and M. Baghani. 2019. On the finite bending of functionally graded light-sensitive hydrogels. Meccanica 54 (6):841–54. doi:10.1007/s11012-019-01004-4.
  • Shojaeifard, M., and M. Baghani. 2020. Finite deformation swelling of a temperature-sensitive hydrogel cylinder under combined extension-torsion. Applied Mathematics and Mechanics 41 (3):409–24. doi: 10.1007/s10483-020-2585-6.
  • Shojaeifard, M., M. Baghani, and H. Shahsavari. 2020. Rutting investigation of asphalt pavement subjected to moving cyclic loads: An implicit viscoelastic–viscoplastic–viscodamage FE framework. International Journal of Pavement Engineering 21 (11):1393–407.
  • Shojaeifard, M., M. R. Bayat, and M. Baghani. 2019. Swelling-induced finite bending of functionally graded pH-responsive hydrogels: A semi-analytical method. Applied Mathematics and Mechanics 40 (5):679–94.
  • Shojaeifard, M., R. Dolatabadi, S. Sheikhi, and M. Baghani. 2020. Coupled thermo-mechanical swelling of a thermo-responsive hydrogel hollow cylinder under extension-torsion: Analytical solution and FEM. Journal of Intelligent Material Systems and Structures. doi:10.1177/1045389X20951273.
  • Shojaeifard, M., F. Rouhani, and M. Baghani. 2019. A combined analytical–numerical analysis on multidirectional finite bending of functionally graded temperature-sensitive hydrogels. Journal of Intelligent Material Systems and Structures 30 (13):1882–95. doi: 10.1177/1045389X19849253.
  • Shojaeifard, M., S. Sheikhi, M. Baniassadi, and M. Baghani. 2020. On finite bending of visco-hyperelastic materials: A novel analytical solution and FEM. Acta Mechanica 231 (8):3435–16. doi: 10.1007/s00707-020-02733-4.
  • Shojaeifard, M., S. Tahmasiyan, and M. Baghani. 2020. Swelling response of functionally graded temperature-sensitive hydrogel valves: Analytic solution and finite element method. Journal of Intelligent Material Systems and Structures 31 (3):457–74. doi: 10.1177/1045389X19891544.
  • Taber, L. A. 2004. Nonlinear theory of elasticity: Applications in biomechanics. NJ: World Scientific.
  • Treloar, L. 1943. The elasticity of a network of long-chain molecules—II. Transactions of the Faraday Society 39 (0):241–6. doi: 10.1039/TF9433900241.
  • Valiollahi, A., M. Shojaeifard, and M. Baghani. 2019a. Closed form solutions for large deformation of cylinders under combined extension-torsion. International Journal of Mechanical Sciences 157:336–47.
  • Valiollahi, A., M. Shojaeifard, and M. Baghani. 2019b. Implementing stretch-based strain energy functions in large coupled axial and torsional deformations of functionally graded cylinder. International Journal of Applied Mechanics 11 (4):1950039. doi: 10.1142/S175882511950039X.
  • Yarali, E., R. Noroozi, A. Moallemi, A. Taheri, and M. Baghani. 2020. Developing an analytical solution for a thermally tunable soft actuator under finite bending. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2020.1763182.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.