132
Views
1
CrossRef citations to date
0
Altmetric
Articles

Eigenvalue approach to hyperbolic thermoelastic problem in porous orthotropic medium with Green-Lindsay model

& ORCID Icon
Pages 4229-4245 | Received 19 Jul 2019, Accepted 26 Sep 2020, Published online: 19 Oct 2020

References

  • Abbas, I. A. 2014. Eigenvalue approach in a three dimensional generalized interactions with temperature-dependent material properties. Computers & Mathematics with Applications 68 (12):2036–56. doi:10.1016/j.camwa.2014.09.016.
  • Abbas, I. A. 2015. A dual phase lag model on thermoelastic interaction in an infinite fiber-reinforced anisotropic medium with a circular hole. Mechanics Based Design of Structures and Machines 43 (4):501–13. doi:10.1080/15397734.2015.1029589.
  • Bayones, F. S., and A. M. Abd-Alla. 2018. Eigenvalue approach to coupled thermoelasticity in a rotating isotropic medium. Results in Physics 8:7–15. doi:10.1016/j.rinp.2017.09.021.
  • Biswas, S. 2020a. Fundamental solution of steady oscillations in thermoelastic medium with voids. Waves in Random and Complex Media 29 30 (4):759–75. doi:10.1080/17455030.2018.1557759.
  • Biswas, S. 2020b. Thermal shock problem in porous orthotropic medium with three-phase-lag model. Indian Journal of Physics :1–10. doi:10.1007/s12648-020-01703-9.
  • Biswas, S. 2020c. Surface waves in porous nonlocal thermoelastic orthotropic medium. Acta Mechanica 231 (7):2741–60. doi:10.1007/s00707-020-02670-2.
  • Biswas, S., and B. Mukhopadhyay. 2018. Eigenfunction expansion method to analyze thermal shock behavior in magneto-thermoelastic orthotropic medium under three theories. Journal of Thermal Stresses 41 (3):366–82. doi:10.1080/01495739.2017.1393780.
  • Biswas, S., and N. Sarkar. 2018. Fundamental solution of the steady oscillations equations in porous thermoelastic medium with dual-phase-lag model. Mechanics of Materials 126:140–7. doi:10.1016/j.mechmat.2018.08.008.
  • Biswas, S. 2019a. Fundamental solution of steady oscillations for porous materials with dual-phase-lag model in micropolar thermoelasticity. Mechanics Based Design of Structures and Machines 47 (4):430–52. doi:10.1080/15397734.2018.1557528.
  • Biswas, S. 2019b. Modeling of memory-dependent derivatives in orthotropic medium with three-phase-lag model under the effect of magnetic field. Mechanics Based Design of Structures and Machines 47 (3):302–18. doi:10.1080/15397734.2018.1548968.
  • Biswas, S., B. Mukhopadhyay, and S. Shaw. 2019. Effect of rotation in magneto-thermoelastic transversely isotropic hollow cylinder with three-phase lag model. Mechanics Based Design of Structures and Machines 47 (2):234–54. doi:10.1080/15397734.2018.1545587.
  • Chakraborty, S. 2017. Eigenvalue approach to generalized thermoelastic interactions in an unbounded body with circular cylindrical cavity without energy dissipation. International Journal of Applied Mechanics and Engineering 22 (4):811–25. doi:10.1515/ijame-2017-0053.
  • Chirita, S., and A. Scalia. 2001. On the spatial and temporal behavior in linear thermoelasticity of materials with voids. Journal of Thermal Stresses 24 (5):433–55. doi:10.1080/01495730151126096.
  • Cowin, S. C., and J. W. Nunziato. 1983. Linear elastic materials with voids. Journal of Elasticity 13 (2):125–47. doi:10.1007/BF00041230.
  • Das, N. C., S. N., Das, and B. Das. 1983. Eigenvalue approach to thermoelasticity. Journal of Thermal Stresses 6 (1):35–43. doi:10.1080/01495738308942164.
  • Das, N. C., A. Lahiri, and R. R. Giri. 1997. Eigen value approach to generalized thermoelasticity. Indian Journal of Pure and Applied Mathematics 28:1573–94.
  • Green, A. E., and K. A. Lindsay. 1972. Thermoelasticity. Journal of Elasticity 2 (1):1–7. doi:10.1007/BF00045689.
  • Hosseini-Tehrani, P., M. R. Eslami, and S. Azari. 2006. Analysis of thermoelastic crack problems using Green Lindsay theory. Journal of Thermal Stresses 29 (4):317–30. doi:10.1080/01495730500360484.
  • Iesan, D. A. 1986. Theory of thermoelastic materials with voids. Acta Mechanica. 60:67–89.
  • Kumar, R., and L. Rani. 2004. Response of generalized thermoelastic half-space with voids due to mechanical and thermal sources. Meccanica 39 (6):563–84. doi:10.1007/s11012-004-1106-x.
  • Kumar, R., and R. Kumar. 2011. Wave Propagation in orthotropic generalized thermoelastic half-space with voids under initial stress. International Journal of Applied Mathematics and Mechanics 7:17–44.
  • Kumar, R., A. Kumar, and S. Mukhopadhyay. 2016. An depth investigation on place harmonic waves under two-temperature thermoelasticity with two relaxation parameters. Mathematics and Mechanics of Solids 21 (6):725–36. doi:10.1177/1081286514536429.
  • Kumar, A., O. N. Shivay, and S. Mukhopadhyay. 2019. Infinite speed behavior of two-temperature Green Lindsay thermoelasticity theory under temperature-dependent thermal conductivity. Zeitschrift Fur Angewandte Mathematik Und Physik. 70 (1):26. doi:10.1007/s00033-018-1064-0.
  • Lord, H., and Y. Shulman. 1967. Generalized dynamic theory of thermoelasticity. Journal of the Mechanics and Physics of Solids 15 (5):299–309. doi:10.1016/0022-5096(67)90024-5.
  • Mukhopadhyay, S., R., Prasad, and R. Kumar. 2011. On the theory of two-temperature thermoelasticity with two phase-lags. Journal of Thermal Stresses 34 (4):352–65. doi:10.1080/01495739.2010.550815.
  • Pramanik, A. S., and S. Biswas. 2020. Surface waves in nonlocal thermoelastic medium with state space approach. Journal of Thermal Stresses 43 (6):667–86. doi:10.1080/01495739.2020.1734129.
  • Puri, P., and S. C. Cowin. 1985. Plane waves in linear elastic materials with voids. Journal of Elasticity 15 (2):167–83. doi:10.1007/BF00041991.
  • Sarkar, N., S. De, and N. Sarkar. 2020. Modified Green-Lindsay model on the reflection and propagation of thermoelastic plane waves at an isothermal stress-free surface. Indian Journal of Physics 94 (8):1215–25. doi:10.1007/s12648-019-01566-9.
  • Singh, B. 2007. Wave propagation in generalized thermoelastic material with voids. Applied Mathematics and Computation 189 (1):698–709. doi:10.1016/j.amc.2006.11.123.
  • Sherief, H. 1994. A thermo-mechanical shock problem for thermoelasticity with two relaxation times. International Journal of Engineering Science 32 (2):313–25. doi:10.1016/0020-7225(94)90011-6.
  • Svanadze, M. 2007. Fundamental solution in the theory of micropolar thermoelasticity for materials with voids. Journal of Thermal Stresses. 30:219–38.
  • Youssef, H. M. 2006. Theory of two-temperature-generalized thermoelasticity. IMA Journal of Applied Mathematics 71 (3):383–90. doi:10.1093/imamat/hxh101.
  • Youssef, H. M., and I. A. Abbas. 2007. Thermal shock problem of generalized thermoelasticity for an annular cylinder with variable thermal conductivity. Computational Methods in Science and Technology 13 (2):95–100. doi:10.12921/cmst.2007.13.02.95-100.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.