321
Views
8
CrossRef citations to date
0
Altmetric
Articles

Stochastic normal mode frequency analysis of hybrid angle ply laminated composite skew plate with opening using a novel approach

ORCID Icon, ORCID Icon &
Pages 275-309 | Received 16 Jul 2020, Accepted 18 Oct 2020, Published online: 10 Nov 2020

References

  • Akbari, H., M. Azadi, and H. Fahham. 2020. Free vibration analysis of thick sandwich cylindrical panels with saturated FG-porous core. Mechanics Based Design of Structures and Machines. doi: 10.1080/15397734.2020.1748051.
  • Ansari, M. I., A. Kumar, S. Fic, and D. Barnat-Hunek. 2018. Flexural and free vibration analysis of CNT-reinforced functionally graded plate. Materials 11 (12):2387. doi: 10.3390/ma11122387
  • Bao, Y., T. Xiong, and Z. Hu. 2014. PSO-mismo modeling strategy for multistep-ahead time series prediction. IEEE Transactions on Cybernetics 44 (5):655–68. doi: 10.1109/TCYB.2013.2265084.
  • Bhar, A., S. S. Phoenix, and S. K. Satsangi. 2010. Finite element analysis of laminated composite stiffened plates using FSDT and HSDT: A comparative perspective. Composite Structures 92 (2):312–21. doi: 10.1016/j.compstruct.2009.08.002
  • Chandrashekhar, M., and R. Ganguli. 2010. Nonlinear vibration analysis of composite laminated and sandwich plates with random material properties. International Journal of Mechanical Sciences 52 (7):874–91. doi: 10.1016/j.ijmecsci.2010.03.002
  • Chau, K. W. 2007. Application of a PSO-based neural network in analysis of outcomes of construction claims. Automation in Construction 16 (5):642–6. doi: 10.1016/j.autcon.2006.11.008
  • Chaubey, A. K., A. Kumar, and A. Chakrabarti. 2018. Vibration of laminated composite shells with cutouts and concentrated mass. AIAA Journal 56 (4):1662–78. doi: 10.2514/1.J056320
  • Chaudhuri, P. B., A. Mitra, and S. Sahoo. 2019. Mode frequency analysis of antisymmetric angle-ply laminated composite stiffened hypar shell with cutout. Mechanics and Mechanical Engineering 23 (1):162–71. doi: 10.2478/mme-2019-0022
  • Dey, S., S. Naskar, T. Mukhopadhyay, U. Gohs, A. Spickenheuer, L. Bittrich, S. Sriramula, S. Adhikari, and G. Heinrich. 2016. Uncertain natural frequency analysis of composite plates including effect of noise - A polynomial neural network approach. Composite Structures 143:130–42. doi: 10.1016/j.compstruct.2016.02.007
  • Ebrahimi, F., M. Nouraei, and A. Dabbagh. 2020. Modeling vibration behavior of embedded graphene-oxide powder-reinforced nanocomposite plates in thermal environment. Mechanics Based Design of Structures and Machines 48 (2):217–40. doi: 10.1080/15397734.2019.1660185
  • Gao, K., W. Gao, B. Wu, D. Wu, and C. Song. 2018. Nonlinear primary resonance of functionally graded porous cylindrical shells using the method of multiple scales. Thin-Walled Structures 125:281–93. doi: 10.1016/j.tws.2017.12.039
  • Gao, K., R. Li, and J. Yang. 2019. Dynamic characteristics of functionally graded porous beams with interval material properties. Engineering Structures 197:109441. doi: 10.1016/j.engstruct.2019.109441
  • Hachemi, M., and S. M. Hamza-Cherif. 2020. Free vibration of composite laminated plate with complicated cutout. Mechanics Based Design of Structures and Machines 48 (2):192–216. doi: 10.1080/15397734.2019.1633341
  • Karsh, P. K., T. Mukhopadhyay, and S. Dey. 2018. Stochastic investigation of natural frequency for functionally graded plates. IOP Conference Series: Materials Science and Engineering 326 (1):012003. doi: 10.1088/1757-899X/326/1/012003
  • Kennedy, J., and R. C. Eberhart. 1997. A discrete binary version of the particle swarm algorithm. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. Computational Cybernetics and Simulatioin 5:4104–8. doi: 10.1109/icsmc.1997.637339.
  • Khan, K., and A. Sahai. 2012. A comparison of BA, GA, PSO, BP and LM for training feed forward neural networks in e-Learning context. International Journal of Intelligent Systems and Applications 4 (7):23–9. doi: 10.5815/ijisa.2012.07.03
  • Khdeir, A. A., and L. Librescu. 1988. Analysis of symmetric cross-ply laminated elastic plates using a higher-order theory: Part II-Buckling and free vibration. Composite Structures 9 (4):259–77. doi: 10.1016/0263-8223(88)90048-7
  • Kumar, A., P. Bhargava, and A. Chakrabarti. 2013. Vibration of laminated composite skew hypar shells using higher order theory. Thin-Walled Structures 63:82–90. doi: 10.1016/j.tws.2012.09.007
  • Kumar, A., and A. Chakrabarti. 2017. Failure analysis of laminated composite skew laminates. Procedia Engineering 173:1560–6. doi: 10.1016/j.proeng.2016.12.245
  • Kumar, A., A. Chakrabarti, P. Bhargava, and R. Chowdhury. 2015. Probabilistic failure analysis of laminated sandwich shells based on higher order zigzag theory. Journal of Sandwich Structures & Materials 17 (5):546–61. doi: 10.1177/1099636215577368
  • Liew, K. M., Y. Q. Huang, and J. N. Reddy. 2003. Vibration analysis of symmetrically laminated plates based on FSDT using the moving least squares differential quadrature method. Computer Methods in Applied Mechanics and Engineering 192 (19):2203–22. doi: 10.1016/S0045-7825(03)00238-X.
  • Lim, T. C. 2016. Higher-order shear deformation of very thick simply supported equilateral triangular plates under uniform load. Mechanics Based Design of Structures and Machines 44 (4):514–22. doi: 10.1080/15397734.2015.1124784.
  • Lin, S. C. 2000. Reliability predictions of laminated composite plates with random system parameters. Probabilistic Engineering Mechanics 15 (4):327–38. doi: 10.1016/S0266-8920(99)00034-X.
  • Liu, G. R., X. Zhao, K. Y. Dai, Z. H. Zhong, G. Y. Li, and X. Han. 2008. Static and free vibration analysis of laminated composite plates using the conforming radial point interpolation method. Composites Science and Technology 68 (2):354–66. doi: 10.1016/j.compscitech.2007.07.014.
  • Lopes, P. A. M., H. M. Gomes, and A. M. Awruch. 2010. Reliability analysis of laminated composite structures using finite elements and neural networks. Composite Structures 92 (7):1603–13. doi: 10.1016/j.compstruct.2009.11.023
  • Lourakis, M. I. 2005. A brief description of the levenberg-marquardt algorithm implemened by levmar. Foundation of Research and Technology 4 (1):1–6. doi: 10.1016/j.ijinfomgt.2009.10.001.
  • Malekzadeh, P. 2007. A differential quadrature nonlinear free vibration analysis of laminated composite skew thin plates. Thin-Walled Structures 45 (2):237–50. doi: 10.1016/j.tws.2007.01.011
  • Mathew, T. V., P. Prajith, R. O. Ruiz, E. Atroshchenko, and S. Natarajan. 2020. Adaptive importance sampling based neural network framework for reliability and sensitivity prediction for variable stiffness composite laminates with hybrid uncertainties. Composite Structures 245:112344. doi: 10.1016/j.compstruct.2020.112344
  • Minh, D. M., K. Gao, W. Yang, and C. Li. 2020. Hybrid uncertainty analysis of functionally graded plates via multiple-imprecise-random-field modelling of uncertain material properties. Computer Methods in Applied Mechanics and Engineering 368:113116. doi: 10.1016/j.cma.2020.113116
  • Mohamad, E. T., D. Jahed Armaghani, E. Momeni, and S. V. Alavi Nezhad Khalil Abad. 2015. Prediction of the unconfined compressive strength of soft rocks: A PSO-based ANN approach. Bulletin of Engineering Geology and the Environment 74 (3):745–57. doi: 10.1007/s10064-014-0638-0
  • Momeni, E., D. Jahed Armaghani, M. Hajihassani, and M. F. Mohd Amin. 2015. Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks. Measurement 60:50–63. doi: 10.1016/j.measurement.2014.09.075
  • Moré, J. J. 1978. The levenberg-marquardt algorithm: implementation and theory. In Numerical analysis. Lecture notes in mathematics, ed. G. A. Watson, vol. 630. Berlin, Heidelberg: Springer. doi: 10.1007/BFb0067700.
  • Nguyen, H., H. Moayedi, L. K. Foong, H. A. H. Al Najjar, W. A. W. Jusoh, A. S. A. Rashid, and J. Jamali. 2020. Optimizing ANN models with PSO for predicting short building seismic response. Engineering with Computers 36 (3):823–37. doi: 10.1007/s00366-019-00733-0
  • Parhi, A., and B. N. Singh. 2014. Stochastic response of laminated composite shell panel in hygrothermal environment. Mechanics Based Design of Structures and Machines 42 (4):454–82. doi: 10.1080/15397734.2014.888006
  • Reddy, J. N. 1984. A simple higher-order theory for laminated composite plates. Journal of Applied Mechanics 51 (4):745–52. doi: 10.1115/1.3167719
  • Roseiro, L., and U. Ramos, R. Leal. 2004. Determination of material constants of composite laminates using neural networks and genetic algorithms. Proceeding of the European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS), Jyväslylä, Finland, 294.
  • Safarpour, M., A. R. Rahimi, and A. Alibeigloo. 2020. Static and free vibration analysis of graphene platelets reinforced composite truncated conical shell, cylindrical shell, and annular plate using theory of elasticity and DQM. Mechanics Based Design of Structures and Machines 48 (4):496–524. doi: 10.1080/15397734.2019.1646137
  • Singh, B. N., A. K. S. Bisht, M. K. Pandit, and K. K. Shukla. 2009. Nonlinear free vibration analysis of composite plates with material uncertainties: A Monte Carlo simulation approach. Journal of Sound and Vibration 324 (1–2):126–38. doi: 10.1016/j.jsv.2009.01.046
  • Swain, P. K., N. Sharma, D. K. Maiti, and B. N. Singh. 2020. Aeroelastic Analysis of Laminated Composite Plate with Material Uncertainty. Journal of Aerospace Engineering 33 (1):04019111. doi: 10.1061/(ASCE)AS.1943-5525.0001107
  • Tawfik, M. E., P. L. Bishay, and E. E. Sadek. 2018. Neural network-based second order reliability method (NNBSORM) for laminated composite plates in free vibration. Computer Modeling in Engineering and Sciences 115 (1):105–29. doi: 10.3970/cmes.2018.115.105.
  • Verma, A. K., P. B. Deshmukh, M. L. Verma, and V. Kumhar. 2019. Evaluation of vibration characteristics of partially cracked symmetric laminated orthotropic hybrid composite plates. International Journal of Vehicle Noise and Vibration 15 (2/3):168–91. doi: 10.1504/IJVNV.2019.10028126
  • Wang, Z. X., P. Qiao, and J. Xu. 2015. Vibration analysis of laminated composite plates with damage using the perturbation method. Composites Part B: Engineering 72:160–74. doi: 10.1016/j.compositesb.2014.12.005.
  • LeCun, Y., Y. Bengio, and G. Hinton. 2015. Deep learning. Nature 521 (7553):436–44. doi: 10.1038/nature14539.
  • Ye, J., I. Hajirasouliha, J. Becque, and A. Eslami. 2016. Optimum design of cold-formed steel beams using Particle Swarm Optimisation method. Journal of Constructional Steel Research 122:80–93. doi: 10.1016/j.jcsr.2016.02.014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.