158
Views
1
CrossRef citations to date
0
Altmetric
Articles

Aero-thermo-elastic analysis of nonlinear isotropic cracked plate in supersonic flow

&
Pages 518-539 | Received 18 Mar 2020, Accepted 08 Nov 2020, Published online: 26 Nov 2020

References

  • Abdullah, N. A., J. L. Curiel-Sosa, and M. Akbar. 2018. Aeroelastic assessment of cracked composite plate by means of fully coupled finite element and doublet lattice method. Composite Structures 202:151–61. doi:10.1016/j.compstruct.2018.01.015.
  • AsadiGorgi, H., M. Dardel, and M. H. Pashaei. 2015. Effects of all-over part-through cracks on the aeroelastic characteristics of rectangular panels. Applied Mathematical Modelling 39 (23–24):7513–36. doi:10.1016/j.apm.2015.03.017.
  • Bose, T., and A. R. Mohanty. 2013. Vibration analysis of a rectangular thin isotropic plate with a part-through surface crack of arbitrary orientation and position. Journal of Sound and Vibration 332 (26):7123–41. doi:10.1016/j.jsv.2013.08.017.
  • Chen, W.-H., and H.-C. Lin. 1985. Flutter analysis of thin cracked panels using the finite element method. AIAA Journal 23 (5):795–801. doi:10.2514/3.8986.
  • Diba, F., E. Esmailzadeh, and D. Younesian. 2014. Nonlinear vibration analysis of isotropic plate with inclined part-through surface crack. Nonlinear Dynamics 78 (4):2377–97. doi:10.1007/s11071-014-1595-7.
  • Dowell, E. H. 1966. Nonlinear oscillations of a fluttering plate. AIAA Journal 4 (7):1267–75. doi:10.2514/3.3658.
  • Dowell, E. H. 1967. Nonlinear oscillations of a fluttering plate. II. AIAA Journal 5 (10):1856–62. doi:10.2514/3.4316.
  • Fakoor, M., and N. M. Khansari. 2016. Mixed mode I/II fracture criterion for orthotropic materials based on damage zone properties. Engineering Fracture Mechanics 153:407–20. doi:10.1016/j.engfracmech.2015.11.018.
  • Fakoor, M., and N. M. Khansari. 2018. General mixed mode I/II failure criterion for composite materials based on matrix fracture properties. Theoretical and Applied Fracture Mechanics 96:428–42. doi:10.1016/j.tafmec.2018.06.004.
  • Gupta, A., N. K. Jain, R. Salhotra, A. M. Rawani, and P. V. Joshi. 2016. Effect of fibre orientation on non-linear vibration of partially cracked thin rectangular orthotropic micro plate: An analytical approach. International Journal of Mechanical Sciences 105:378–97. doi:10.1016/j.ijmecsci.2015.11.020.
  • Ismail, R., and M. P. Cartmell. 2012. An investigation into the vibration analysis of a plate with a surface crack of variable angular orientation. Journal of Sound and Vibration 331 (12):2929–48. doi:10.1016/j.jsv.2012.02.011.
  • Israr, A., M. P. Cartmell, E. Manoach, I. Trendafilova, W. Ostachowicz, M. Krawczuk, and A. Żak. 2009. Analytical modeling and vibration analysis of partially cracked rectangular plates with different boundary conditions and loading. Journal of Applied Mechanics 76 (1). doi:10.1115/1.2998755.
  • Jain, N. K., S. Soni, and R. Prajapati. 2019. Analytical treatment for vibration analysis of partially cracked orthotropic and FGM submerged cylindrical shell with consideration of fluid-structure interaction. Mechanics Based Design of Structures and Machines 1–24. doi:10.1080/15397734.2019.1689140.
  • Jiang, G., and F. Li. 2018. Aerothermoelastic analysis of composite laminated trapezoidal panels in supersonic airflow. Composite Structures 200:313–27. doi:10.1016/j.compstruct.2018.05.138.
  • Joshi, P. V., N. K. Jain, and G. D. Ramtekkar. 2015. Effect of thermal environment on free vibration of cracked rectangular plate: An analytical approach. Thin-Walled Structures 91:38–49. doi:10.1016/j.tws.2015.02.004.
  • Joshi, P. V., N. K. Jain, G. D. Ramtekkar, and G. S. Virdi. 2016. Vibration and buckling analysis of partially cracked thin orthotropic rectangular plates in thermal environment. Thin-Walled Structures 109:143–58. doi:10.1016/j.tws.2016.09.020.
  • Joshi, P. V., A. Gupta, N. K. Jain, R. Salhotra, A. M. Rawani, and G. D. Ramtekkar. 2017. Effect of thermal environment on free vibration and buckling of partially cracked isotropic and FGM micro plates based on a non classical Kirchhoff's plate theory: An analytical approach. International Journal of Mechanical Sciences 131:155–70. doi:10.1016/j.ijmecsci.2017.06.044.
  • Kouchakzadeh, M. A., M. Rasekh, and H. Haddadpour. 2010. Panel flutter analysis of general laminated composite plates. Composite Structures 92 (12):2906–15. doi:10.1016/j.compstruct.2010.05.001.
  • Leissa, A. W. 1969. Vibration of plates. Vol. 160. Scientific and Technical Information Division, National Aeronautics and Space Administration.
  • Librescu, L.,. P. Marzocca, and W. A. Silva. 2004. Linear/nonlinear supersonic panel flutter in a high-temperature field. Journal of Aircraft 41 (4):918–24. doi:10.2514/1.679.
  • Mehri Khansari, N., M. Fakoor, and F. Berto. 2019. Probabilistic micromechanical damage model for mixed mode I/II fracture investigation of composite materials. Theoretical and Applied Fracture Mechanics 99:177–93. doi:10.5267/j.esm.2019.4.003.
  • Moazzez, K., H. Saeidi Googarchin, and S. M. H. Sharifi. 2018. Natural frequency analysis of a cylindrical shell containing a variably oriented surface crack utilizing line-spring model. Thin-Walled Structures 125:63–75. doi:10.1016/j.tws.2018.01.009.
  • Natarajan, S., M. Ganapathi, and S. Bordas. 2012. "Supersonic flutter analysis of thin cracked functionally graded material plates." arXiv preprint arXiv:1203.2848. https://arxiv.org/abs/1203.2848.
  • Navazi, H. M., and H. Haddadpour. 2007. Aero-thermoelastic stability of functionally graded plates. Composite Structures 80 (4):580–7. doi:10.1016/j.compstruct.2006.07.014.
  • Park, J. S., J. H. Kim, and S. H. Moon. 2005. Thermal post-buckling and flutter characteristics of composite plates embedded with shape memory alloy fibers. Composites Part B: Engineering 36 (8):627–36. doi:10.1016/j.compositesb.2004.11.007.
  • Pidaparti, R. M. V., and C. C. Chang. 1998. Finite element supersonic flutter analysis of skewed and cracked composite panels. Computers & Structures 69 (2):265–70. doi:10.1016/S0045-7949.(98)00003-0.
  • Reddy, J. N. 2004. Mechanics of laminated plates and shells theory and analysis. Boca Raton, FL: CRC Press.
  • Rezaei, M., S. A. Fazelzadeh, A. Mazidi, and H. H. Khodaparast. 2019. Fuzzy uncertainty analysis in the flutter boundary of an aircraft wing subjected to a thrust force. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233 (6):2185–97. doi:10.1177/0954410018773898.
  • Rice, J. R., and N. Levy. 1972. The part-through surface crack in an elastic plate. Journal of Applied Mechanics 39 (1):185–94. doi:10.1115/1.3422609.
  • Shiau, L. C., and T. Y. Wu. 2001. Nonlinear flutter of laminated plates with in-plane force and transverse shear effects. Mechanics of Structures and Machines 29 (1):121–42. doi:10.1081/SME-100000006.
  • Song, Z. G., and F. M. Li. 2014a. Aerothermoelastic analysis of nonlinear composite laminated panel with aerodynamic heating in hypersonic flow. Composites Part B: Engineering 56:830–9. doi:10.1016/j.compositesb.2013.09.019.
  • Song, Z. G., and F. M. Li. 2014b. Vibration and aeroelastic properties of ordered and disordered two-span panels in supersonic airflow. International Journal of Mechanical Sciences 81:65–72. doi:10.1016/j.ijmecsci.2014.02.004.
  • Soni, S., N. K. Jain, and P. V. Joshi. 2019. Stability and dynamic analysis of partially cracked thin orthotropic microplates under thermal environment: An analytical approach. Mechanics Based Design of Structures and Machines 1–27. doi:10.1080/15397734.2019.1620613.
  • Su, Z., L. Wang, K. Sun, and D. Wang. 2019. Vibration characteristic and flutter analysis of elastically restrained stiffened functionally graded plates in thermal environment. International Journal of Mechanical Sciences 157:872–84. doi:10.1016/j.ijmecsci.2019.05.028.
  • Viola, E., P. Ricci, and M. H. Aliabadi. 2007. Free vibration analysis of axially loaded cracked Timoshenko beam structures using the dynamic stiffness method. Journal of Sound and Vibration 304 (1–2):124–53. doi:10.1016/j.jsv.2007.02.013.
  • Wang, K., D. J. Inman, and C. R. Farrar. 2005. Crack-induced changes in divergence and flutter of cantilevered composite panels. Structural Health Monitoring: An International Journal 4 (4):377–92. doi:10.1177/1475921705057977.
  • Wu, G. Y., and Y. S. Shih. 2005. Dynamic instability of rectangular plate with an edge crack. Computers & Structures 84 (1–2):1–10. doi:10.1016/j.compstruc.2005.09.003.
  • Xie, F., Y. Qu, W. Zhang, Z. Peng, and G. Meng. 2019. Nonlinear aerothermoelastic analysis of composite laminated panels using a general higher-order shear deformation zig-zag theory. International Journal of Mechanical Sciences 150:226–37. doi:10.1016/j.ijmecsci.2018.10.029.
  • Xue, D. Y., and C. Mei. 1993. Finite element nonlinear panel flutter with arbitrary temperatures in supersonic flow. AIAA Journal 31 (1):154–62. doi:10.2514/3.11332.
  • Yazdi, A. A. 2019. Nonlinear aeroelastic stability analysis of three-phase nano-composite plates. Mechanics Based Design of Structures and Machines 47 (6):753–68. doi:10.1080/15397734.2019.1610436.
  • Zhou, K., J. Su, and H. Hua. 2018. Aero-thermo-elastic flutter analysis of supersonic moderately thick orthotropic plates with general boundary conditions. International Journal of Mechanical Sciences 141:46–57. doi:10.1016/j.ijmecsci.2018.03.026.
  • Zhou, R. C., D. Y. Xue, and C. Mei. 1994. Finite element time domain-modal formulation for nonlinear flutter of composite panels. AIAA Journal 32 (10):2044–52. doi:10.2514/6.2006-1732.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.