150
Views
4
CrossRef citations to date
0
Altmetric
Articles

Nonlinear geometry effects investigation on free vibrations of beams using shear deformation theory

& ORCID Icon
Pages 1446-1467 | Received 22 May 2020, Accepted 04 Jan 2021, Published online: 19 Jan 2021

References

  • Alavi, S. H., and H. Eipakchi. 2019. Analytical method for free-damped vibration analysis of viscoelastic shear deformable annular plates made of functionally graded materials. Mechanics Based Design of Structures and Machines 47 (4):497–519. doi:10.1080/15397734.2019.1565499.
  • Amabili, M. 2008. Nonlinear vibration and stability of shells and plates, New York: Cambridge University Press.
  • Brojan, M., M. Cebron, and F. Kosel. 2012. Large deflections of non-prismatic nonlinearly elastic cantilever beams subjected to non-uniform continuous load and a concentrated load at the free end. Acta Mechanica Sinica 28 (3):863–869. doi:10.1007/s10409-012-0053-3.
  • Chen, L. 2010. An integral approach for large deflection cantilever beams. International Journal of Non-Linear Mechanics 45 (3):301–305. doi:10.1016/j.ijnonlinmec.2009.12.004.
  • Chen, L. H., W. Zhang, and F. H. Yang. 2010. Nonlinear dynamics of higher-dimensional system for an axially accelerating viscoelastic beam with in-plane and out-of-plane vibrations. Journal of Sound and Vibration 329 (25):5321–5345. doi:10.1016/j.jsv.2010.06.023.
  • Dado, M., and S. Al-Sadder. 2005. A new technique for large deflection analysis of non-prismatic cantilever beams. Mechanics Research Communications 32 (6):692–703. doi:10.1016/j.mechrescom.2005.01.004.
  • Das, D. 2017. Free vibration and buckling analyses of geometrically non-linear and shear-deformable FGM beam fixed to the inside of a rotating rim. Composite Structures 179:628–660. doi:10.1016/j.compstruct.2017.07.051.
  • Farokhi, H., and M. H. Ghayesh. 2016. Nonlinear coupled dynamics of shear deformable microbeams. International Journal of Dynamics and Control 4 (4):492–503. doi:10.1007/s40435-015-0164-3.
  • Ghayesh, M. H. 2009. Stability characteristics of an axially accelerating string supported by an elastic foundation. Mechanism and Machine Theory 44 (10):1964–1979. doi:10.1016/j.mechmachtheory.2009.05.004.
  • Ghayesh, M. H. 2011. On the natural frequencies complex mode functions, and critical speeds of axially traveling laminated beams: Parametric study. Acta Mechanica Solida Sinica 24 (4):373–382. doi:10.1016/S0894-9166(11)60038-4.
  • Ghayesh, M. H. 2012a. Coupled longitudinal–transverse dynamics of an axially accelerating beam. Journal of Sound and Vibration 331 (23):5107–5124. doi:10.1016/j.jsv.2012.06.018.
  • Ghayesh, M. H. 2012b. Stability and bifurcations of an axially moving beam with an intermediate spring support. Nonlinear Dynamics 69 (1–2):193–210. doi:10.1007/s11071-011-0257-2.
  • Ghayesh, M. H. 2012c. Subharmonic dynamics of an axially accelerating beam. Archive of Applied Mechanics 82 (9):1169–1181. doi:10.1007/s00419-012-0609-5.
  • Ghayesh, M. H. 2018a. Dynamics of functionally graded viscoelastic microbeams. International Journal of Engineering Science 124:115–131. doi:10.1016/j.ijengsci.2017.11.004.
  • Ghayesh, M. H. 2018b. Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams. Applied Mathematical Modelling 59:583–596. doi:10.1016/j.apm.2018.02.017.
  • Ghayesh, M. H. 2019a. Asymmetric viscoelastic nonlinear vibrations of imperfect AFG beams. Applied Acoustics 154:121–128. doi:10.1016/j.apacoust.2019.03.022.
  • Ghayesh, M. H. 2019b. Dynamical analysis of multilayered cantilevers. Communications in Nonlinear Science and Numerical Simulation 71:244–253. doi:10.1016/j.cnsns.2018.08.012.
  • Ghayesh, M. H. 2019c. Mechanics of viscoelastic functionally graded microcantilevers. European Journal of Mechanics - A/Solids 73:492–499. doi:10.1016/j.euromechsol.2018.09.001.
  • Ghayesh, M. H. 2019d. Nonlinear oscillations of FG cantilevers. Applied Acoustics 145:393–398. doi:10.1016/j.apacoust.2018.08.014.
  • Ghayesh, M. H. 2019e. Viscoelastic dynamics of axially FG microbeams. International Journal of Engineering Science 135:75–85. doi:10.1016/j.ijengsci.2018.10.005.
  • Ghayesh, M. H. 2019f. Viscoelastic mechanics of Timoshenko functionally graded imperfect microbeams. Composite Structures 225:110974. doi:10.1016/j.compstruct.2019.110974.
  • Ghayesh, M. H., and N. Moradian. 2011. Nonlinear dynamic response of axially moving stretched viscoelastic strings. Archive of Applied Mechanics 81 (6):781–799. doi:10.1007/s00419-010-0446-3.
  • Gholami, R., R. Ansari, and Y. Gholami. 2017. Nonlinear resonant dynamics of geometrically imperfect higher-order shear deformable functionally graded carbon-nanotube reinforced composite beams. Composite Structures 174:45–58. doi:10.1016/j.compstruct.2017.04.042.
  • Ghuku, S., and K. N. Saha. 2019. A parametric study on geometrically nonlinear behavior of curved beams with single and double link rods, and supported on moving boundary. International Journal of Mechanical Sciences 161–162:105065. doi:10.1016/j.ijmecsci.2019.105065.
  • Guo, Z., and W. Zhang. 2016. The spreading residue harmonic balance study on the vibration frequencies of tapered beams. Applied Mathematical Modelling 40 (15–16):7195–203. doi:10.1016/j.apm.2016.02.037.
  • Hagedorn, P., and A. D. Gupta. 1988. Vibrations and waves in continuous mechanical systems. USA: John Wiley & Sons.
  • Jang, T. S. 2012. A new semi-analytical approach to large deflections of Bernoulli–Euler-v. Karman beams on a linear elastic foundation: Nonlinear analysis of infinite beams. Mechanical Sciences 8:863–9.
  • Khadem Moshir, S., and H. R. Eipakchi. 2018. An analytical approach for vibration analysis of laminated orthotropic beam based on nonlocal theory. Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science 233 (10):3633–3648.
  • Khadem Moshir, S., H. Eipakchi, and F. Sohani. 2017. Free vibration behavior of viscoelastic annular plates using first order shear deformation theory. Structural Engineering and Mechanics 62:607–618.
  • Larbi, L. O., A. Kaci, M. S. A. Houari, and A. Tounsi. 2013. An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams. Mechanics Based Design of Structures and Machines 41 (4):421–433. doi:10.1080/15397734.2013.763713.
  • Lee, K. 2002. Large deflections of cantilever beams of non-linear elastic material under a combined loading. International Journal of Non-Linear Mechanics 37 (3):439–443. doi:10.1016/S0020-7462(01)00019-1.
  • Li, S., J. Hu, C. Zhai, and L. Xie. 2013. A unified method for modeling of axially and/or transversally functionally graded beams with variable cross-section profile. Mechanics Based Design of Structures and Machines 41 (2):168–188. doi:10.1080/15397734.2012.709466.
  • Li, Z., Y. F. Xu, D. Huang, and Y. Zhao. 2020. Two-dimensional elasticity solution for free vibration of simple-supported beams with arbitrarily and continuously varying thickness. Archive of Applied Mechanics 90 (2):275–289. doi:10.1007/s00419-019-01608-y.
  • Lokshin, A. Z., V. Mishkevich, and L. D. Ivanov. 2009. Effect of shear on deflection and buckling of beams and plates. Ships and Offshore Structures 4 (4):323–336. doi:10.1080/17445300902781401.
  • Malek-Hosseini, Z., and H. R. Eipakchi. 2017. An analytical procedure for dynamic response determination of a viscoelastic beam with moderately large deflection using first-order shear deformation theory. Mechanics of Advanced Materials and Structures 24 (10):875–884. doi:10.1080/15376494.2016.1196791.
  • McHugh, K., and E. Dowell. 2019. Nonlinear responses of inextensible cantilever and free–free beams undergoing large deflections. Applied Mechanics 85:51008.
  • Minaei, M. 2016. Strongly nonlinear free vibration analysis of beams using modified homotopy perturbation method subjected to the nonlinear thermal loads. Indian Journal of Science and Technology 9 (43):1–7. doi:10.17485/ijst/2016/v9i43/104968.
  • Mirsky, I., and G. Hermann. 1958. Axially motions of thick cylindrical shells. Journal of Applied Mechanics 25:97–102.
  • Mirzabeigy, A., and R. Madoliat. 2016. Large amplitude free vibration of axially loaded beams resting on variable elastic foundation. Alexandria Engineering Journal 55 (2):1107–1114. doi:10.1016/j.aej.2016.03.021.
  • Nayfeh, A. H. 1993. Introduction to perturbation techniques. New York: John Wiley.
  • Pratiher, B., and S. K. Dwivedy. 2011. Nonlinear vibrations and frequency response analysis of a cantilever beam under periodically varying magnetic field. Mechanics Based Design of Structures and Machines 39 (3):378–391. doi:10.1080/15397734.2011.557972.
  • Rao, S. S. 2007. Vibrations of continuous systems. New Jersey: John Wiley & Sons.
  • Sadd, M. 2009. Elasticity theory, applications, and numerics, New York: Academic Press.
  • Sapountzakis, E. J., and V. G. Mokos. 2008. Shear deformation effect in nonlinear analysis of spatial beams. Engineering Structures 30 (3):653–663. doi:10.1016/j.engstruct.2007.05.004.
  • Seddighi, H., and H. R. Eipakchi. 2013. Natural frequency and critical speed determination of an axially moving viscoelastic beam. Mechanics of Time-Dependent Materials 17 (4):529–541. doi:10.1007/s11043-012-9201-1.
  • Seddighi, H., and H. R. Eipakchi. 2016. Dynamic response of an axially moving viscoelastic Timoshenko beam. Journal of Solid Mechanics 8 (1):78–92.
  • Shahlaei-Far, S., A. Nabarrete, and J. M. Balthazar. 2016. Nonlinear vibrations of cantilever Timoshenko beams: A homotopy analysis. Latin American Journal of Solids and Structures 13 (10):1866–1877. doi:10.1590/1679-78252766.
  • Sohani, F., and H. R. Eipakchi. 2013. Response determination of a beam with moderately large deflection under transverse dynamic load using first order shear deformation theory. Journal of Solid Mechanics 5 (4):391–401.
  • Sohani, F., and H. R. Eipakchi. 2018. Analytical solution for modal analysis of Euler-Bernoulli and Timoshenko beam with an arbitrary varying cross-section. Mathematical Models in Engineering 4 (3):164–174. doi:10.21595/mme.2018.20116.
  • Stojanović, V. 2015. Geometrically nonlinear vibrations of beams supported by a nonlinear elastic foundation with variable discontinuity. Communications in Nonlinear Science and Numerical Simulation 28 (1–3):66–80. doi:10.1016/j.cnsns.2015.04.002.
  • Sun, D. L., and X. F. Li. 2019. Initial value method for free vibration of axially loaded functionally graded Timoshenko beams with nonuniform cross section. Mechanics Based Design of Structures and Machines 47 (1):102–120. doi:10.1080/15397734.2018.1526690.
  • Tari, H. 2013. On the parametric large deflection study of E-B cantilever beams subjected to combined tip point loading. International Journal of Non-Linear Mechanics 49:90–99. doi:10.1016/j.ijnonlinmec.2012.09.004.
  • Tasora, A., S. Benatti, D. Mangoni, and R. Garziera. 2020. A geometrically exact isogeometric beam for large displacements and contacts. Computer Methods in Applied Mechanics and Engineering 358:112635. doi:10.1016/j.cma.2019.112635.
  • Tehrani, M., and H. R. Eipakchi. 2012a. Analysis of shearing viscoelastic beam under moving Load. Shock and Vibration 19 (3):447–458. doi:10.1155/2012/194754.
  • Tehrani, M., and H. R. Eipakchi. 2012b. Response determination of a viscoelastic Timoshenko beam subjected to moving load using analytical and numerical methods. Structural Engineering and Mechanics 44 (1):1–13. doi:10.12989/sem.2012.44.1.001.
  • Vuong, P. M., and N. D. Duc. 2020. Nonlinear vibration of FGM moderately thick toroidal shell segment within the framework of Reddy’s third order-shear deformation shell theory. International Journal of Mechanics and Materials in Design 16 (2):245–264. doi:10.1007/s10999-019-09473-x.
  • Wang, C. M., J. N. Reddy, and K. H. Lee. 2000. Shear deformable beams and plates, relationships with classical solutions. New York: Elsevier.
  • Wang, C. M., K. Y. Lam, X. Q. He, and S. Chucheepsakul. 1997. Large deflections of an end supported beam subjected to a point load. International Journal of Non-Linear Mechanics 32 (1):63–72. doi:10.1016/S0020-7462(96)00017-0.
  • Wattanasakulpong, N., and A. Chaikittiratana. 2014. On the linear and nonlinear vibration response of elastically end restrained beams using DTM. Mechanics Based Design of Structures and Machines 42 (2):135–150. doi:10.1080/15397734.2013.847778.
  • Xie, K., Y. Wang, and T. Fu. 2020. Nonlinear vibration analysis of third-order shear deformable functionally graded beams by a new method based on direct numerical integration technique. International Journal of Mechanics and Materials in Design 16 (4):839–855. doi:10.1007/s10999-020-09493-y.
  • Zhang, W., and M. H. Yao. 2008. Theories of multi-pulse global bifurcations for high-dimensional systems and application to cantilever beam. International Journal of Modern Physics B 22 (24):4089–4141. doi:10.1142/S021797920804898X.
  • Zhang, W., D. M. Wang, and M. H. Yao. 2014. Using Fourier differential quadrature method to analyze transverse nonlinear vibrations of an axially accelerating viscoelastic beam. Nonlinear Dynamics 78 (2):839–856. doi:10.1007/s11071-014-1481-3.
  • Zhang, W., F. Wang, and M. Yao. 2005. Global bifurcations and chaotic dynamics in nonlinear nonplanar oscillations of a parametrically excited cantilever beam. Nonlinear Dynamics 40 (3):251–279. doi:10.1007/s11071-005-6435-3.
  • Zhang, W., F. X. Wang, and J. W. Zu. 2005. Local bifurcations and codimension-3 degenerate bifurcations of a quintic nonlinear beam under parametric excitation. Chaos, Solitons and Fractals 24 (4):977–98. doi:10.1016/j.chaos.2004.09.100.
  • Zhang, W., M. H. Yao, and J. H. Zhang. 2009. Using the extended Melnikov method to study the multi-pulse global bifurcations and chaos of a cantilever beam. Journal of Sound and Vibration 319 (1–2):541–569. doi:10.1016/j.jsv.2008.06.015.
  • Zhihua, W., Z. Yimin, Y. Guo, and Y. Zhou. 2019. Nonlinear primary and super-harmonic resonances of functionally graded carbon nanotube reinforced composite beams. International Journal of Mechanical Sciences 154:321–340.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.