122
Views
6
CrossRef citations to date
0
Altmetric
Articles

Variational principle, uniqueness and reciprocity theorems for higher order time-fractional four-phase-lag generalized thermoelastic diffusion model

& ORCID Icon
Pages 1904-1919 | Received 26 Oct 2020, Accepted 25 Jan 2021, Published online: 02 Mar 2021

References

  • Abbas, I. A. 2014. A problem on functional graded material under fractional order theory of thermoelasticity. Theoretical and Applied Fracture Mechanics 74:18–22. doi:10.1016/j.tafmec.2014.05.005.
  • Abbas, I. A. 2014. Eigenvalue approach in a three-dimensional generalized thermoelastic interactions with temperature-dependent material properties. Computers & Mathematics with Applications 68 (12):2036–56. doi:10.1016/j.camwa.2014.09.016.
  • Abbas, I. A. 2015. Eigenvalue approach to fractional order generalized magneto-thermoelastic medium subjected to moving heat source. Journal of Magnetism and Magnetic Materials 377:452–9. doi:10.1016/j.jmmm.2014.10.159.
  • Abbas, I. A. 2018. A study on fractional order theory in thermoelastic half-space under thermal loading. Physical Mesomechanics 21 (2):150–6. doi:10.1134/S102995991802008X.
  • Abbas, I. A., A. N. Abd-Alla, and M. I. A. Othman. 2011. Generalized magneto-thermoelasticity in a fiber-reinforced anisotropic half-space. International Journal of Thermophysics 32 (5):1071–85. doi:10.1007/s10765-011-0957-3.
  • Abbas, I. A., and A. M. Zenkour. 2014. Dual-phase-lag model on thermoelastic interactions in a semi-infinite medium subjected to a ramp-type heating. Journal of Computational and Theoretical Nanoscience 11 (3):642–5. doi:10.1166/jctn.2014.3407.
  • Abbas, I. A., and H. M. Youssef. 2015. Two dimensional fractional order generalized thermoelastic porous material. Latin American Journal of Solids and Structures 12 (7):1415–31. doi:10.1590/1679-78251584.
  • Abbas, I. A., and S. M. Abo-Dahab. 2014. On the numerical solution of thermal shock problem for generalized magneto-thermoelasticity for an infinitely long annular cylinder with variable thermal conductivity. Journal of Computational and Theoretical Nanoscience 11 (3):607–18. doi:10.1166/jctn.2014.3402.
  • Abouelregal, A. E. Forthcoming. Modified fractional thermoelasticity model with multi-relaxation times of higher order: Application to spherical cavity exposed to a harmonic varying heat. Waves in Random and Complex Media. doi:10.1080/17455030.2019.1628320.
  • Abouelregal, A. E. 2020a. A novel model of nonlocal thermoelasticity with time derivatives of higher order. Mathematical Methods in the Applied Sciences 43 (11):6746–60. doi:10.1002/mma.6416.
  • Abouelregal, A. E. 2020b. On Green and Naghdi thermoelasticity model without energy dissipation with higher order time differential and phase-lags. Journal of Applied and Computational Mechanics 6:445–56. doi:10.22055/jacm.2019.29960.1649.
  • Abouelregal, A. E. 2020c. Two-temperature thermoelastic model without energy dissipation including higher order time-derivatives and two phase-lags. Materials Research Express 6 (11):116535. doi:10.1088/2053-1591/ab447f.
  • Abouelregal, A. E. 2020d. Generalized mathematical novel model of thermoelastic diffusion with four phase lags and higher-order time derivative. The European Physical Journal Plus 135 (2):263. doi:10.1140/epjp/s13360-020-00282-2.
  • Abouelregal, A. E., M. A. Elhagary, A. Soleiman, and K. M. Khalil. Forthcoming. Generalized thermoelastic-diffusion model with higher-order fractional time-derivatives and four-phase-lags. Mechanics Based Design of Structures and Machines doi:10.1080/15397734.2020.1730189.
  • Aouadi, M. 2007. Uniqueness and reciprocity theorems in the theory of generalized thermoelastic diffusion. Journal of Thermal Stresses 30 (7):665–78. doi:10.1080/01495730701212815.
  • Aouadi, M. 2008. Generalized theory of thermoelastic diffusion for anisotropic media. Journal of Thermal Stresses 31 (3):270–85. doi:10.1080/01495730701876742.
  • Aouadi, M., B. Lazzari, and R. Nibbi. 2014. A theory of thermoelasticity with diffusion under Green-Naghdi models. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik Und Mechanik 94 (10):837–52. doi:10.1002/zamm.201300050.
  • Ben-Amoz, M. 1965. On variational theorem in coupled thermoelasticity. Journal of Applied Mechanics 32 (4):943–5. doi:10.1115/1.3627345.
  • Biot, M. A. 1956. Thermoelasticity and irreversible thermodynamics. Journal of Applied Physics 27 (3):240–53. doi:10.1063/1.1722351.
  • Biswas, S. 2019. Fundamental solution of steady oscillations for porous materials with dual-phase-lag model in micropolar thermoelasticity. Mechanics Based Design of Structures and Machines 47 (4):430–52. doi:10.1080/15397734.2018.1557528.
  • Chandrasekharaiah, D. S. 1998. Variational and reciprocal principles in thermoelasticity without energy dissipation. Proceedings of the Indian Academy of Sciences - Section A 108 (2):209–15. doi:10.1007/BF02841553.
  • Chandrasekharaiah, D. S., and K. R. Srikantaiah. 1983. Some theorems in temperature-rate-dependent theory of thermoelasticity. Proceedings of the Indian Academy of Sciences - Section A 92 (3):135–41. doi:10.1007/BF02876758.
  • Choudhuri, S. K. R. 2007. On a thermoelastic three-phase-lag model. Journal of Thermal Stresses 30 (3):231–8. doi:10.1080/01495730601130919.
  • Churchill, R. V. 1972. Operational mathematics. New York: McGraw-Hill.
  • Debnath, L. 2004. A brief historical introduction to fractional calculus. International Journal of Mathematical Education in Science and Technology 35 (4):487–501. doi:10.1080/00207390410001686571.
  • Dhaliwal, R. S., and A. Singh. 1980. Dynamic coupled thermoelasticity. Delhi: Hindustan Pub. Corp.
  • El-Attar, S. I., M. H. Hendy, and M. A. Ezzat. 2019. On phase-lag Green–Naghdi theory without energy dissipation for electro-thermoelasticity including heat sources. Mechanics Based Design of Structures and Machines 47 (6):769–86. doi:10.1080/15397734.2019.1610971.
  • Ezzat, M. A., A. S. El Karamany, and M. A. Fayik. 2012. Fractional order theory in thermoelastic solid with three-phase lag heat transfer. Archive of Applied Mechanics 82 (4):557–72. doi:10.1007/s00419-011-0572-6.
  • Ezzat, M. A., and M. A. Fayik. 2011. Fractional order theory of thermoelastic diffusion. Journal of Thermal Stresses 34 (8):851–72. doi:10.1080/01495739.2011.586274.
  • Green, A. E., and K. A. Lindsay. 1972. Thermoelasticity. Journal of Elasticity 2 (1):1–7. doi:10.1007/BF00045689.
  • Green, A. E., and P. M. Naghdi. 1991. A re-examination of the basic results of thermomechanics. Proceedings of the Royal Society of London A 432: 171–94. doi:10.1098/rspa.1991.0012.
  • Green, A. E., and P. M. Naghdi. 1992. On undamped heat waves in an elastic solid. Journal of Thermal Stresses 15 (2):253–64. doi:10.1080/01495739208946136.
  • Green, A. E., and P. M. Naghdi. 1993. Thermoelasticity without energy dissipation. Journal of Elasticity 31 (3):189–208. doi:10.1007/BF00044969.
  • Hobiny, A. D., and I. A. Abbas. 2017. A study on photothermal waves in an unbounded semiconductor medium with cylindrical cavity. Mechanics of Time-Dependent Materials 21 (1):61–72. doi:10.1007/s11043-016-9318-8.
  • Hobiny, A. D., and I. A. Abbas. 2018. Analytical solutions of photo-thermo-elastic waves in a non-homogenous semiconducting material. Results in Physics 10:385–90. doi:10.1016/j.rinp.2018.06.035.
  • Ignaczak, J. 1978. A uniqueness theorem for stress-temperature equations of dynamic thermoelasticity. Journal of Thermal Stresses 1 (2):163–70. doi:10.1080/01495737808926939.
  • Ignaczak, J. 1979. Uniqueness in generalized thermoelasticity. Journal of Thermal Stresses 2 (2):171–5. doi:10.1080/01495737908962399.
  • Kalkal, K. K., A. Gunghas, and S. Deswal. 2020. Two-dimensional magneto-thermoelastic interactions in a micropolar functionally graded solid. Mechanics Based Design of Structures and Machines 48 (3):348–69. doi:10.1080/15397734.2019.1652100.
  • Lazarević. M. 2012. Advanced topics on applications of fractional calculus on control problems, system stability and modeling. Serbia: WSEAS Press.
  • Lord, H., and Y. Shulman. 1967. A generalized dynamical theory of thermoelasticity. Journal of the Mechanics and Physics of Solids 15 (5):299–309. doi:10.1016/0022-5096(67)90024-5.
  • Molla, M. A. K., N. Mondal, and S. H. Mallik. 2019. Effects of fractional and two-temperature parameters on stress distributions for an unbounded generalized thermoelastic medium with spherical cavity. Arab Journal of Basic and Applied Sciences 26 (1):302–10. doi:10.1080/25765299.2019.1621511.
  • Molla, M. A. K., N. Mondal, and S. H. Mallik. 2020. Waves in generalized thermo-viscoelastic infinite continuum with cylindrical cavity due to three-phase-lag time-nonlocal heat transfer. Journal of Thermal Stresses 43 (6):784–800. doi:10.1080/01495739.2020.1749196.
  • Mondal, S., and M. Kanoria. 2020. Thermoelastic solutions for thermal distributions moving over thin slim rod under memory-dependent three-phase lag magneto-thermoelasticity. Mechanics Based Design of Structures and Machines 48 (3):277–98. doi:10.1080/15397734.2019.1620529.
  • Nickell, R., and J. Sackman. 1968. Variational principles for linear coupled thermoelasticity. Quarterly of Applied Mathematics 26 (1):11–26. doi:10.1090/qam/231576.
  • Noda, N., R. B. Hetnarski, and Y. Tanigawa. 2003. Thermal stresses. 2nd ed. Newyork & London: Taylor and Francis Group.
  • Nowacki, W. 1974a. Dynamical problems of thermodiffusion in solids I. Bulletin of the Polish Academy of Sciences: Technical Sciences 22:55–64.
  • Nowacki, W. 1974b. Dynamical problems of thermodiffusion in solids II. Bulletin of the Polish Academy of Sciences: Technical Sciences 22:129–35.
  • Nowacki, W. 1974c. Dynamical problems of thermodiffusion in solids III. Bulletin of the Polish Academy of Sciences: Technical Sciences 22:257–66.
  • Nowacki, W. 1974d. Dynamic problems of thermodiffusion in elastic solids. Proceedings of Vibration Problems 15:105–28.
  • Nowacki, W. 1975. Dynamic problems of thermoelasticity. Warszawa, Poland: PWN-Polish Scientific Publishers.
  • Othman, M. I. A., and E. E. M. Eraki. 2017. Generalized magneto-thermoelastic half-space with diffusion under initial stress using three-phase-lag model. Mechanics Based Design of Structures and Machines 45 (2):145–59. doi:10.1080/15397734.2016.1152193.
  • Parkus, H. 1972. Variational principles in thermo-and magneto-elasticity. Vienna: Springer-Verlag.
  • Podlubny, I. 1999. Fractional differential equations. New York: Academic Press.
  • Podstrigach, Y. S. 1961. Differential equations of the problem of thermal diffusion in a deformed isotropic solid. Dopovidi Akademii Nauk Ukrainskoi RSR 2:169–72.
  • Povstenko, Y. 2009. Thermoelasticity that uses fractional heat conduction equation. Journal of Mathematical Sciences 162 (2):296–305. doi:10.1007/s10958-009-9636-3.
  • Povstenko, Y. 2015. Fractional thermoelasticity. Switzerland: Springer.
  • Saeed, T., I. A. Abbas, and M. Marin. 2020. A GL model on thermo-elastic interaction in a poroelastic material using finite element method. Symmetry 12 (3):488. doi:10.3390/sym12030488.
  • Sherief, H. H., and R. S. Dhaliwal. 1980. A uniqueness theorem and variational principle for generalized thermoelasticity. Journal of Thermal Stresses 3 (2):223–30. doi:10.1080/01495738008926964.
  • Sherief, H. H., F. A. Hamza, and H. A. Saleh. 2004. The theory of generalized thermoelastic diffusion. International Journal of Engineering Science 42 (5–6):591–608. doi:10.1016/j.ijengsci.2003.05.001.
  • Sun, H. G., Y. Zhang, D. Baleanu, W. Chen, and Y. Q. Chen. 2018. A new collection of real world applications of fractional calculus in science and engineering. Communications in Nonlinear Science and Numerical Simulation 64:213–31. doi:10.1016/j.cnsns.2018.04.019.
  • Tzou, D. Y. 1995. A unified filed approach for heat conduction from macro to macro Scales. Journal of Heat Transfer 117 (1):8–16. doi:10.1115/1.2822329.
  • Wang, J., R. S. Dhaliwal, and S. R. Majumdar. 1997. Some theorems in the generalized theory of thermoelasticity for pre-stressed bodies. Indian Journal of Pure and Applied Mathematics 28:267–75.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.