161
Views
5
CrossRef citations to date
0
Altmetric
Articles

A novel nonlocal higher-order strain gradient shell theory for static analysis of CNTRC doubly-curved nanoshells subjected to thermo-mechanical loading

, , &
Pages 1987-2003 | Received 06 Nov 2020, Accepted 02 Feb 2021, Published online: 15 Feb 2021

References

  • Adineh, M., and M. Kadkhodayan. 2017. Three-dimensional thermo-elastic analysis of multi-directional functionally graded rectangular plates on elastic foundation. Acta Mechanica 228 (3):881–99. doi:10.1007/s00707-016-1743-x.
  • Arefi, M., and A. H. S. Arani. 2018. Higher order shear deformation bending results of a magnetoelectrothermoelastic functionally graded nanobeam in thermal, mechanical, electrical, and magnetic environments. Mechanics Based Design of Structures and Machines 46 (6):669–92. doi:10.1080/15397734.2018.1434002.
  • Arefi, M., and A. M. Zenkour. 2018. Size-dependent electro-elastic analysis of a sandwich microbeam based on higher-order sinusoidal shear deformation theory and strain gradient theory. Journal of Intelligent Material Systems and Structures 29 (7):1394–406. doi:10.1177/1045389X17733333.
  • Barati, M. R., and H. Shahverdi. 2016. A four-variable plate theory for thermal vibration of embedded FG nanoplates under non-uniform temperature distributions with different boundary conditions. Structural Engineering and Mechanics 60 (4):707–27. doi:10.12989/sem.2016.60.4.707.
  • Barati, M. R., A. M. Zenkour, D. resHoa, L. Kha, P. V. Vinh, N. D. Duc, N. T. Trung, L. T. Son, and D. V. Thom. 2020. Bending and free vibration analyses of functionally graded material nanoplates via a novel nonlocal single variable shear deformation plate theory. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. doi: 10.1177/0954406220964522.
  • Barati, M. R., A. M. Zenkour, and H. Shahverdi. 2016. Thermo-mechanical buckling analysis of embedded nanosize FG plates in thermal environments via an inverse cotangential theory. Composite Structures 141:203–12. doi:10.1016/j.compstruct.2016.01.056.
  • Bhimaraddi, A. 1993. Three-dimensional elasticity solution for static response of orthotropic doubly curved shallow shells on rectangular planform. Composite Structures 24 (1):67–77. doi:10.1016/0263-8223(93)90056-V.
  • Cao, Y., M. Khorami, S. Baharom, H. Assilzadeh, and M. Hassan Dindarloo. 2021. The effects of multi-directional functionally graded materials on the natural frequency of the doubly-curved nanoshells. Composite Structures 258:113403. doi:10.1016/j.compstruct.2020.113403.
  • Chavan, S. G., and A. Lal. 2018. Geometrical nonlinear bending characteristics of SWCNTRC doubly curved shell panels. Advances in Aircraft and Spacecraft Science 5 (1):021.
  • Chen, M., G. Jin, Y. Zhang, F. Niu, and Z. Liu. 2019. Three-dimensional vibration analysis of beams with axial functionally graded materials and variable thickness. Composite Structures 207:304–22. doi:10.1016/j.compstruct.2018.09.029.
  • Dehshahri, K., M. Z. Nejad, S. Ziaee, A. Niknejad, and A. Hadi. 2020. Free vibrations analysis of arbitrary three-dimensionally FGM nanoplates. Advances in Nano Research 8 (2):115–34.
  • Dindarloo, M. H., L. Li, R. Dimitri, and F. Tornabene. 2020. Nonlocal elasticity response of doubly-curved nanoshells. Symmetry 12 (3):466. doi:10.3390/sym12030466.
  • Dindarloo, M. H., and A. M. Zenkour. 2020. Nonlocal strain gradient shell theory for bending analysis of FG spherical nanoshells in thermal environment. The European Physical Journal Plus 135 (10):1–18. doi:10.1140/epjp/s13360-020-00796-9.
  • Ebrahimi, F., and M. R. Barati. 2016. Size-dependent thermal stability analysis of graded piezomagnetic nanoplates on elastic medium subjected to various thermal environments. Applied Physics A 122 (10):910. doi:10.1007/s00339-016-0441-9.
  • Ebrahimi, F., and M. R. Barati. 2017. Vibration analysis of viscoelastic inhomogeneous nanobeams resting on a viscoelastic foundation based on nonlocal strain gradient theory incorporating surface and thermal effects. Acta Mechanica 228 (3):1197–210. doi:10.1007/s00707-016-1755-6.
  • Gao, Y., X. Wanshen, and Z. Haiping. 2019. Nonlinear vibration of functionally graded nano-tubes using nonlocal strain gradient theory and a two-steps perturbation method. Structural Engineering and Mechanics 69 (2):205–19.
  • Gao, Y., W-s Xiao, and H. Zhu. 2019. Nonlinear vibration analysis of different types of functionally graded beams using nonlocal strain gradient theory and a two-step perturbation method. The European Physical Journal Plus 134 (1):23. doi:10.1140/epjp/i2019-12446-0.
  • Gao, Y., W-s Xiao, and H. Zhu. 2020. Snap-buckling of functionally graded multilayer graphene platelet-reinforced composite curved nanobeams with geometrical imperfections. European Journal of Mechanics - A/Solids 82:103993. doi:10.1016/j.euromechsol.2020.103993.
  • Giunta, G., S. Belouettar, and A. J. M. Ferreira. 2016. A static analysis of three-dimensional functionally graded beams by hierarchical modelling and a collocation meshless solution method. Acta Mechanica 227 (4):969–91. doi:10.1007/s00707-015-1503-3.
  • Habibi, M., M. Alireza, S. Hamed, and G. Majid. 2019. Effect of porosity on buckling and vibrational characteristics of the imperfect GPLRC composite nanoshell. Mechanics Based Design of Structures and Machines. doi: 10.1080/15397734.2019.1701490.
  • Hadi, A., M. Z. Nejad, and M. Hosseini. 2018. Vibrations of three-dimensionally graded nanobeams. International Journal of Engineering Science 128:12–23. doi:10.1016/j.ijengsci.2018.03.004.
  • Han, Y., and J. Elliott. 2007. Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Computational Materials Science 39 (2):315–23. doi:10.1016/j.commatsci.2006.06.011.
  • Karami, B., M. Janghorban, and T. Rabczuk. 2019. Dynamics of two-dimensional functionally graded tapered Timoshenko nanobeam in thermal environment using nonlocal strain gradient theory. Composites Part B: Engineering 182:107622. doi: 10.1016/j.compositesb.2019.107622.
  • Kiani, Y. 2019. Buckling of functionally graded graphene reinforced conical shells under external pressure in thermal environment. Composites Part B: Engineering 156:128–37. doi:10.1016/j.compositesb.2018.08.052.
  • Li, L.,. Y. Hu, and L. Ling. 2016. Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory. Physica E: Low-Dimensional Systems and Nanostructures 75:118–24. doi:10.1016/j.physe.2015.09.028.
  • Li, L.,. X. Li, and Y. Hu. 2018. Nonlinear bending of a two-dimensionally functionally graded beam. Composite Structures 184:1049–61. doi:10.1016/j.compstruct.2017.10.087.
  • Lim, C. W., G. Zhang, and J. N. Reddy. 2015. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. Journal of the Mechanics and Physics of Solids. 78:298–313. doi:10.1016/j.jmps.2015.02.001.
  • Liu, D., S. Kitipornchai, W. Chen, and J. Yang. 2018. Three-dimensional buckling and free vibration analyses of initially stressed functionally graded graphene reinforced composite cylindrical shell. Composite Structures 189:560–9. doi:10.1016/j.compstruct.2018.01.106.
  • Liu, D., Z. Li, S. Kitipornchai, and J. Yang. 2019. Three-dimensional free vibration and bending analyses of functionally graded graphene nanoplatelets-reinforced nanocomposite annular plates. Composite Structures 229:111453. doi:10.1016/j.compstruct.2019.111453.
  • Lü, C. F., W. Q. Chen, R. Q. Xu, and C. W. Lim. 2008. Semi-analytical elasticity solutions for bi-directional functionally graded beams. International Journal of Solids and Structures 45 (1):258–75. doi:10.1016/j.ijsolstr.2007.07.018.
  • Lü, C. F., C. W. Lim, and W. Q. Chen. 2009. Semi‐analytical analysis for multi‐directional functionally graded plates: 3‐D elasticity solutions. International Journal for Numerical Methods in Engineering 79 (1):25–44. doi:10.1002/nme.2555.
  • Mehar, K., and S. K. Panda. 2017. Numerical investigation of nonlinear thermomechanical deflection of functionally graded CNT reinforced doubly curved composite shell panel under different mechanical loads. Composite Structures 161:287–98. doi:10.1016/j.compstruct.2016.10.135.
  • Mehralian, F., Y. T. Beni, and M. K. Zeverdejani. 2017. Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes. Physica B: Condensed Matter 514:61–9. doi:10.1016/j.physb.2017.03.030.
  • Nejad, M. Z., and A. Hadi. 2016. Non-local analysis of free vibration of bi-directional functionally graded Euler–Bernoulli nano-beams. International Journal of Engineering Science 105:1–11. doi:10.1016/j.ijengsci.2016.04.011.
  • Nejad, M. Z., A. Hadi, and A. Rastgoo. 2016. Buckling analysis of arbitrary two-directional functionally graded Euler–Bernoulli nano-beams based on nonlocal elasticity theory. International Journal of Engineering Science 103:1–10. doi:10.1016/j.ijengsci.2016.03.001.
  • Nemat-Alla, M. 2003. Reduction of thermal stresses by developing two-dimensional functionally graded materials. International Journal of Solids and Structures 40 (26):7339–56. doi:10.1016/j.ijsolstr.2003.08.017.
  • Nie, G., and Z. Zhong. 2010. Dynamic analysis of multi-directional functionally graded annular plates. Applied Mathematical Modelling 34 (3):608–16. doi:10.1016/j.apm.2009.06.009.
  • Reddy, J. N. 2003. Mechanics of laminated composite plates and shells: Theory and analysis. USA: CRC press.
  • Safarpour, M., A. R. Rahimi, and A. Alibeigloo. 2020. Static and free vibration analysis of graphene platelets reinforced composite truncated conical shell, cylindrical shell, and annular plate using theory of elasticity and DQM. Mechanics Based Design of Structures and Machines 48 (4):496–524. doi:10.1080/15397734.2019.1646137.
  • Shen, H.-S., and X. Q. He. 2017. Large amplitude free vibration of nanotube-reinforced composite doubly curved panels resting on elastic foundations in thermal environments. Journal of Vibration and Control 23 (16):2672–89. doi:10.1177/1077546315619280.
  • Shen, H. S., J. N. Reddy, and Y. Yu. 2021. Postbuckling of doubly curved FG-GRC laminated panels subjected to lateral pressure in thermal environments. Mechanics of Advanced Materials and Structures 28 (3):260–11. doi:10.1080/15376494.2018.1556827.
  • Shen, H. S., and Y. Xiang. 2012. Nonlinear vibration of nanotube reinforced composite cylindrical shells in thermal environments. Computer Methods in Applied Mechanics and Engineerin. 213-216:196–205. doi:10.1016/j.cma.2011.11.025.
  • Shen, H.-S., and Y. Xiang. 2016. Postbuckling of pressure-loaded nanotube-reinforced composite doubly curved panels resting on elastic foundations in thermal environments. International Journal of Mechanical Sciences 107:225–34. doi:10.1016/j.ijmecsci.2016.01.004.
  • Shen, H. S., Y. Xiang, and Y. Fan. 2019. Large amplitude vibration of doubly curved FG-GRC laminated panels in thermal environments. Nanotechnology Reviews 8 (1):467–83. doi:10.1515/ntrev-2019-0042.
  • Tahouneh, V., and M. H. Naei. 2014. A novel 2-D six-parameter power-law distribution for three-dimensional dynamic analysis of thick multi-directional functionally graded rectangular plates resting on a two-parameter elastic foundation. Meccanica 49 (1):91–109. doi:10.1007/s11012-013-9776-x.
  • Torabi, J., A. Reza, Z. Ali, and K. Hosseini. 2020. Dynamic and pull-in instability analyses of functionally graded nanoplates via nonlocal strain gradient theory. Mechanics Based Design of Structures and Machines. doi: 10.1080/15397734.2020.1721298.
  • Wang, Q., A. Yao, and M. H. Dindarloo. 2020. New higher-order shear deformation theory for bending analysis of the two-dimensionally functionally graded nanoplates. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science.
  • Wu, H., J. Yang, and S. Kitipornchai. 2017. Dynamic instability of functionally graded multilayer graphene nanocomposite beams in thermal environment. Composite Structures 162:244–54. doi:10.1016/j.compstruct.2016.12.001.
  • Zafarmand, H., and M. Kadkhodayan. 2015. Three dimensional elasticity solution for static and dynamic analysis of multi-directional functionally graded thick sector plates with general boundary conditions. Composites Part B: Engineering 69:592–602. doi:10.1016/j.compositesb.2014.10.048.
  • Zarezadeh, E., V. Hosseini, and A. Hadi. 2020. Torsional vibration of functionally graded nano-rod under magnetic field supported by a generalized torsional foundation based on nonlocal elasticity theory. Mechanics Based Design of Structures and Machines 48 (4):480–95. doi:10.1080/15397734.2019.1642766.
  • Zenkour, A. M. 2016. Nonlocal transient thermal analysis of a single-layered graphene sheet embedded in viscoelastic medium. Physica E: Low-Dimensional Systems and Nanostructures. 79:87–97. doi:10.1016/j.physe.2015.12.003.
  • Zenkour, A. M. 2017. Nonlocal thermoelasticity theory without energy dissipation for nano-machined beam resonators subjected to various boundary conditions. Microsystem Technologies 23 (1):55–65. doi:10.1007/s00542-015-2703-4.
  • Zenkour, A. M. 2018. Nonlocal elasticity and shear deformation effects on thermal buckling of a CNT embedded in a viscoelastic medium. The European Physical Journal Plus 133 (5):196. doi:10.1140/epjp/i2018-12014-2.
  • Zhong, Z., and E. Shang. 2008. Closed-form solutions of three-dimensional functionally graded plates. Mechanics of Advanced Materials and Structures 15 (5):355–63. doi:10.1080/15376490801977528.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.