341
Views
6
CrossRef citations to date
0
Altmetric
Articles

Thermal shock response of porous functionally graded sandwich curved beam using a new layerwise theory

&
Pages 2055-2079 | Received 30 Oct 2020, Accepted 07 Feb 2021, Published online: 24 Feb 2021

References

  • Adam, C., R. Heuer, A. Raue, and F. Ziegler. 2000. Thermally induced vibrations of composite beams with inter layer slip. Journal of Thermal Stresses 23 (8):747–72. doi:10.1080/01495730050192392.
  • Alipour, S. M., Y. Kiani, and M. R. Eslami. 2016. Rapid heating of FGM rectangular plates. Acta Mechanica 227 (2):421–36. doi:10.1007/s00707-015-1461-9.
  • Amirani, M. C., S. M. R. Khalili, and N. Nemati. 2009. Free vibration analysis of sandwich beam with FG core using the element free Galerking method. Composite Structures 90 (3):373–9. doi:10.1016/j.compstruct.2009.03.023.
  • Asemi, K., M. Babaei, and F. Kiarasi. 2020. Static, natural frequency and dynamic analyses of functionally graded porous annular sector plates reinforced by graphene platelets. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2020.1822865.
  • Avcar, M. 2019. Free vibration of imperfect sigmoid and power law functionally graded beam. Steel and Composite Structures 30 (6):603–15. doi:10.12989/scs.2019.30.6.603.
  • Babaei, H., and M. R. Eslami. 2020. Nonlinear bending analysis of size-dependent FG porous microtubes in thermal environment based on modified couple stress theory. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2020.1784202.
  • Babaei, M. H., M. Abbasi, and M. R. Eslami. 2008. Coupled thermoelasticity of functionally graded beams. Journal of Thermal Stresses 31 (8):680–97. doi:10.1080/01495730802193930.
  • Bennai, R., H. A. Atmane, and A. Tounsi. 2015. A new higher-order shear and normal deformation theory for functionally graded sandwich beam. Steel and Composite Structures 19 (3):521–46. doi:10.12989/scs.2015.19.3.521.
  • Bhangale, R. K., and N. Ganesan. 2006. Thermoelastic buckling and vibration behavior of a functionally graded sandwich beam with constrained viscoelastic core. Journal of Sound and Vibration 295 (1-2):294–316. doi:10.1016/j.jsv.2006.01.026.
  • Boley, B. A. 1956. Thermally induced vibrations of beams. Journal of Aeronautical Sciences 23 (2):179–81. doi:10.2514/8.3527.
  • Bouderba, B., and H. M. Berrabah. 2020. Bending response of porous advanced composite plates under thermomechanical loads. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2020.1801464.
  • Brischetto, S. 2009. Classical and mixed advanced models for sandwich plates embedding functionally graded cores. Journal of Mechanics of Materials and Structures 4 (1):13–33. doi:10.2140/jomms.2009.4.13.
  • Bui, T. Q., A. Khosravifard, C. Zhang, M. R. Hematiyan, and M. V. Golub. 2013. Dynamic analysis of sandwich beams with functionally graded core using a truly meshfree radial point interpolation. Engineering Structures 47:90–104. doi:10.1016/j.engstruct.2012.03.041.
  • Dehrouyeh-Semnani, A. M. 2018. On the thermally induced non-linear response of functionally graded beams. International Journal of Engineering Science 125:53–74. doi:10.1016/j.ijengsci.2017.12.001.
  • Demir, O., D. Balkan, R. C. Peker, M. Metin, and A. Arikoglu. 2020. Vibration analysis of curved composite sandwich beams with viscoelastic core by using differential quadrature method. Journal of Sandwich Structures & Materials 22 (3):743–70. doi:10.1177/1099636218767491.
  • Ebrahimi, F., F. Ghasemi, and E. Salari. 2016. Investigating thermal effects on vibration behaviour of temperature-dependent compositionally graded Euler beams with porosities. Meccanica 51 (1):223–49. doi:10.1007/s11012-015-0208-y.
  • Ebrahimi, F., and M. Zia. 2015. Large amplitude nonlinear vibration analysis of functionally graded Timoshenko beams with porosities. Acta Astronautica 116:117–25. doi:10.1016/j.actaastro.2015.06.014.
  • Ferreira, A. J. M. 2005. Analysis of composite plates using a layerwise theory and multiquadrics discretization. Mechanics of Advanced Materials and Structures 12 (2):99–112. doi:10.1080/15376490490493952.
  • Ghiasian, S. E., Y. Kiani, and M. R. Eslami. 2014. Nonlinear rapid heating of FGM beams. International Journal of Non-Linear Mechanics 67:74–84. doi:10.1016/j.ijnonlinmec.2014.08.006.
  • Javani, M., Y. Kiani, and M. R. Eslami. 2019. Geometrically nonlinear rapid surface heating of temperature-dependent FGM arches. Aerospace Science and Technology 90:264–74. doi:10.1016/j.ast.2019.04.049.
  • Jones, J. P. 1966. Thermoelastic vibrations of beam. The Journal of the Acoustical Society of America 39 (3):542–8. doi:10.1121/1.1909926.
  • Karami, B., D. Shahsavari, M. Janghorban, and L. Li. 2019. Influence of homogenization schemes on vibration of functionally graded curved microbeams. Composite Structures 216:67–79. doi:10.1016/j.compstruct.2019.02.089.
  • Kant, T., and B. S. Manjunath. 1989. Refined theories for composite and sandwich beam with C0 finite elements. Computers & Structures 33 (3):755–64. doi:10.1016/0045-7949(89)90249-6.
  • Keibolahi, A., Y. Kiani, and M. R. Eslami. 2018. Non-linear rapid heating of shallow arches. Journal of Thermal Stresses 41 (10-12):1244–58. doi:10.1080/01495739.2018.1494522.
  • Khdeir, A. A. 2001. Thermally induced vibration of cross-ply laminated shallow arches. Journal of Thermal Stresses 24 (11):1085–96. doi:10.1080/01495730152620078.
  • Lee, J. C., and S. H. Ahn. 2018. Bulk density measurement of porous functionally graded materials. International Journal of Precision Engineering and Manufacturing 19 (1):31–7. doi:10.1007/s12541-018-0004-4.
  • Liu, W., H. Li, J. Zhang, and H. Li. 2020. Theoretical analysis on the elasticity of novel accordion cellular honeycomb core with in-plane curved beams. Journal of Sandwich Structures & Materials 22 (3):702–27. doi:10.1177/1099636218768174.
  • Malik, P., and R. Kadoli. 2018. Thermally induced motions of thermally insulated beams subjected to surface heating. Ain Shams Engineering Journal 9 (1):149–60. doi:10.1016/j.asej.2015.10.010.
  • Manolis, G. D., and D. E. Beskos. 1980. Thermally induced vibrations of beam structures. Computer Methods in Applied Mechanics and Engineering 21 (3):337–55. doi:10.1016/0045-7825(80)90101-2.
  • Maturi, D. A., A. J. M. Ferreira, A. M. Zenkour, and D. S. Mashat. 2014. Analysis of sandwich plates with a new layerwise formulation. Composites Part B: Engineering 56:484–9. doi:10.1016/j.compositesb.2013.08.086.
  • Narayan, A., B. Zineb, O. Polit, B. Pradyumna, and M. Ganapathi. 2019. Large amplitude free flexural vibrations of functionally graded grapheme platelets reinforces porous composite curved beam using finite element based on trigonometric shear deformation theory. International Journal of Non-Linear Mechanics 116:302–17. doi:10.1016/j.ijnonlinmec.2019.07.010.
  • Pandey, S., and S. Pradyumna. 2017. A finite element formulation for thermally induced vibrations of functionally graded material sandwich plates and shell panels. Composite Structures 160:877–86. doi:10.1016/j.compstruct.2016.10.040.
  • Pandey, S., and S. Pradyumna. 2018a. Analysis of functionally graded sandwich plates using a higher-order layerwise theory. Composites Part B: Engineering 153:325–36. doi:10.1016/j.compositesb.2018.08.121.
  • Pandey, S., and S. Pradyumna. 2018b. Transient stress analysis of sandwich plate and shell panels with functionally graded material core under thermal shock. Journal of Thermal Stresses 41 (5):543–67. doi:10.1080/01495739.2017.1422999.
  • Pendhari, S. S., T. Kant, Y. M. Desai, and C. V. Subbaiah. 2010. On deformation of functionally graded narrow beams under transverse loads. International Journal of Mechanics and Materials in Design 6 (3):269–82. doi:10.1007/s10999-010-9136-0.
  • Pradhan, S. C., and T. Murmu. 2009. Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations by using differential quadrature method. Journal of Sound and Vibration 321 (1-2):342–62. doi:10.1016/j.jsv.2008.09.018.
  • Qatu, M. S. 2004. Vibration of laminated shells and plates. New York: Elsevier.
  • Reddy, J. N. 2011. Mircostructure-dependent couple stress theories of functionally graded beams. Journal of the Mechanics and Physics of Solids 59 (11):2382–99. doi:10.1016/j.jmps.2011.06.008.
  • Reddy, J. N., and C. D. Chin. 1998. Thermomechanical analysis of functionally graded cylinders and plates. Journal of Thermal Stresses 21 (6):593–626. doi:10.1080/01495739808956165.
  • Sayyad, A. S., and Y. M. Ghugal. 2019a. Modelling and analysis functionally graded sandwich beams: A review. Mechanics of Advanced Materials and Structures 26 (21):1776–95. doi:10.1080/15376494.2018.1447178.
  • Sayyad, A. S., and Y. M. Ghugal. 2019b. A unified five-degree-of-freedom theory for bending analysis of softcore and hardcore functionally graded sandwich beams and plates. Journal of Sandwich Structures and Materials. doi:10.1177/1099636219840980.
  • Shahsavari, D., M. Shahsavari, L. Li, and B. Karami. 2018. A novel quazi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Wrinkler/Paternak/Kerr foundation. Aerospace Science and Technology 72:134–49. doi:10.1016/j.ast.2017.11.004.
  • Shao, D., S. Hu, Q. Wang, and F. Pang. 2016. A unified analysis for the transient response of composite laminated curved beam with arbitrary lamination schemes and general boundary restraints. Composite Structures 154:507–26. doi:10.1016/j.compstruct.2016.07.070.
  • Shekhar, S. 2020. Study of deformation due to thermal shock in porous thermoelastic material with reference temperature dependent properties. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2020.1792314.
  • Shen, Z., Q. Tian, X. Liu, and G. Hu. 2013. Thermally induced vibrations of flexible beams using absolute nodal coordinate formulation. Aerospace Science and Technology 29 (1):386–93. doi:10.1016/j.ast.2013.04.009.
  • Şimşek, M., and M. Al-Shujairi. 2017. Static, free and forced vibration of functionally graded (FG) sandwich beams excited by two successive moving harmonic loads. Composites Part B: Engineering 108:18–34. doi:10.1016/j.compositesb.2016.09.098.
  • Su, Z., G. Jin, Y. Wang, and Y. Xinmao. 2016. A general Fourier formulation for vibration analysis of functionally graded sandwich beams with arbitrary boundary condition and resting on elastic foundation. Acta Mechanica 227 (5):1493–514. doi:10.1007/s00707-016-1575-8.
  • Swaminathan, K., and D. M. Sangeetha. 2017. Thermal analysis of FGM plates – A critical review of various modelling techniques. Composite Structures 160:43–60. doi:10.1016/j.compstruct.2016.10.047.
  • Tossapanon, P., and N. Wattanasakulpong. 2016. Stability and free vibration of functionally graded sandwich beams resting on two parameter elastic foundation. Composite Structures 142:215–25. doi:10.1016/j.compstruct.2016.01.085.
  • Venkataramana, J., and M. K. Jana. 1974. Thermally forced vibrations of beams. Journal of Sound and Vibration 37 (2):291–5. doi:10.1016/S0022-460X(74)80338-X.
  • Vo, T. P., H. T. Thai, T.-K. Nguyen, F. Inam, and J. Lee. 2015. A quasi-3D theory for vibration and buckling of functionally graded sandwich beams. Composite Structures 119:1–12. doi:10.1016/j.compstruct.2014.08.006.
  • Wattanasakulpong, N., A. Chaikittiratana, and S. Pornpeerakeat. 2020. Vibration of size dependent functionally graded sandwich microbeams with different boundary conditions based on modified couple stress theory. Journal of Sandwich Structures & Materials 22 (2):220–47. doi:10.1177/1099636217738909.
  • Wattanasakulpong, N., and V. Ungbhakorn. 2014. Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerospace Science and Technology 32 (1):111–20. doi:10.1016/j.ast.2013.12.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.