172
Views
1
CrossRef citations to date
0
Altmetric
Articles

A theoretical and numerical study on the perforation of thin metallic plates by high speed long rods

ORCID Icon &
Pages 2355-2381 | Received 20 Nov 2020, Accepted 28 Feb 2021, Published online: 12 Mar 2021

References

  • Al’Tshuler, L. V., S. B. Kormer, M. I. Brazhnik, L. A. Vladimirov, M. P. Speranskaya, and A. I. Funtikov. 1960. The isentropic compressibility of aluminum, copper, lead, and iron at high pressures. Soviet Physics Journal of Experimental and Theoretical Physics 11 (4):766.
  • Anderson, C. E., V. Jr. Hohler, J. D. Walker, and A. J. Stilp. 1995. Time-resolved penetration of long rods into steel targets. International Journal of Impact Engineering 16 (1):1–18. doi:10.1016/0734-743X(94)E0030-Y.
  • Bekkaye, T. H. L., B. Fahsi, A. A. Bousahla, F. Bourada, and T. Abdelouahed. 2020. Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory. Computers and Concrete 26 (5):439–50. doi:10.12989/cac.2020.26.5.439.
  • Bendenia, N., M. Zidour, A. A. Bousahla, F. Bourada, and A. Tounsi. 2020. Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation. Computers and Concrete 26 (3):213–26. doi:10.12989/cac.2020.26.3.213.
  • Chikr, S. C., K. Abdelhakim, A. A. Bousahla, F. Bourada, and A. Tounsi. 2020. A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach. Geomechanics and Engineering 21 (5):471–87. doi:10.12989/gae.2020.21.5.471.
  • Civalek, O., S. Dastjerdi, S. D. Akbas, and B. Akgoz. 2021. Vibration analysis of carbon nanotube-reinforced composite microbeams. Mathematical Methods in the Applied Sciences :1–17. doi:10.1002/mma.7069.
  • Dastjerdi, S., B. Akgoz, and O. Civalek. 2020. On the effect of viscoelasticity on behavior of gyroscopes. International Journal of Engineering Science 149:103236. doi:10.1016/j.ijengsci.2020.103236.
  • Grace, F. I. 1995. Long-rod penetration into targets of finite thickness at normal impact. International Journal of Impact Engineering 16 (3):419–33. doi:10.1016/0734-743X(95)99778-P.
  • Grace, F. I. 1999. Ballistic limit velocity for long rods from ordinance velocity through hypervelocity impact. International Journal of Impact Engineering 23 (1):295–306. doi:10.1016/S0734-743X(99)00081-0.
  • He, Y., L. Y. Xu, H. M. Wen, and Z. C. Lu. 2019. A three-stage model for the perforation of finite metallic plates by long rods at high velocities. Defence Technology 15 (3):409–18. doi:10.1016/j.dt.2018.10.002.
  • Hill, S. A. 2004. Determination of an empirical model for the prediction of penetration hole diameter in thin plates from hypervelocity impact. International Journal of Impact Engineering 30 (3):303–21. doi:10.1016/S0734-743X(03)00079-4.
  • Hosseini, M., and H. Abbas. 2006. Growth of hole in thin plates under hypervelocity impact of spherical projectiles. Thin-Walled Structures 44 (9):1006–16. doi:10.1016/j.tws.2006.08.024.
  • Jalaei, M. H., and O. Civalek. 2019. On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam. International Journal of Engineering Science 143:14–32. doi:10.1016/j.ijengsci.2019.06.013.
  • Lan, B., and H. M. Wen. 2010. Alekseevskii-Tate revisited: An extension to the modified hydrodynamic theory of long-rod penetration. Science China Technological Sciences 53 (5):1364–73. doi:10.1007/s11431-010-0011-x.
  • Lee, W. H., and J. W. Painter. 1999. Material void-opening computation using particle method. International Journal of Impact Engineering 22 (1):1–22. doi:10.1016/S0734-743X(98)00041-4.
  • Li, M. S., and D. Q. Chen. 2001. A constitutive model for materials under high-temperature and pressure. Chinese Journal of High Pressure Physics 15 (1):24–31. doi:10.11858/gywlxb.2001.01.004.
  • Lu, Z. C., and H. M. Wen. 2018. On the penetration of high strength steel rods into semi-infinite aluminium alloy targets. International Journal of Impact Engineering 111:1–10. doi:10.1016/j.ijimpeng.2017.08.006.
  • Maiden, C. J., and A. R. McMillan. 1964. An investigation of the protection afforded a spacecraft by a thin shield. AIAA Journal 2 (11):1992–8. doi:10.2514/6.1964-95.
  • Menasria, A., K. Abdelhakim, A. A. Bousahla, F. Bourada, and S. R. Mahmoud. 2020. A four-unknown refined plate theory for dynamic analysis of FG-sandwich plates under various boundary conditions. Steel and Composite Structures 36 (3):355–67.
  • Nysmith, C. R., and B. P. Denardo. 1969. Experimental investigation of the momentum transfer associated with impact into thin aluminum targets. National Aeronautics and Space Administration Moffett Field Ca Ames Research Center.
  • Piekutowski, A. J. 1996. Formation and description of debris clouds produced by hypervelocity impact. CR-4707, National Aeronautics and Space Administration. Marshall Space Flight Center.
  • Rajendran, A. M., N. S. Brar, and M. K. Khobaid. 1989. Effects of dynamic pre-strain on the tensile flow strength. Proceedings of the Conference on Shock Compression of Condensed Matter, Albuquerque, New Mexico 404.
  • Sawle, D. R. 1970. Hypervelocity impact in thin sheets and semi-infinite targets at 15km/sec. AIAA Journal 8 (7):1240–4. doi:10.2514/3.5879.
  • Schonberg, W. P. 1990. Hypervelocity impact penetration phenomena in aluminum space structures. Journal of Aerospace Engineering 3 (3):173–85. doi:10.1061/(ASCE)0893-1321(1990)3:3(173).
  • Schonberg, W. P. 1993. Predicting multi-wall structural response to hypervelocity impact using the hull code. CR-4486, National Aeronautics and Space Administration, Washington, DC.
  • Schonberg, W. P., A. J. Bean, and K. Darzi. 1991. Hypervelocity impact physics. CR-4343, National Aeronautics and Space Administration, Washington, DC.
  • Selvaraj, R., and M. Ramamoorthy. 2020. Experimental and finite element vibration analysis of CNT reinforced MR elastomer sandwich beam. Mechanics Based Design of Structures and Machines 2:1–13. doi:10.1080/15397734.2020.1778487.
  • Sorenson, N. R. 1964. Systematic investigation of crater formations in metals. Proceedings of the 7th Hypervelocity Impact Symposium 6:281–325.
  • Steinberg, D. J., S. G. Cochran, and M. W. Guinan. 1980. A constitutive model for metals applicable at high-strain rate. Journal of Applied Physics 51 (3):1498–504. doi:10.1063/1.327799.
  • Viola, E., F. Tornabene, E. Ferretti, and N. Fantuzzi. 2013. GDQFEM numerical simulations of continuous media with cracks and discontinuities. Computer Modeling in Engineering and Sciences 94 (4):331–69. doi:10.3970/cmes.2013.094.331.
  • Wang, Q. T., Q. M. Zhang, F. L. Huang, R. R. Long, and Z. Z. Gong. 2014. An analytical model for the motion of debris clouds induced by hypervelocity impact projectiles with different shapes on multi-plate structures. International Journal of Impact Engineering 74:157–64. doi:10.1016/j.ijimpeng.2014.06.006.
  • Wen, H. M., Y. He, and B. Lan. 2010. Analytical model for cratering of semi-infinite metallic targets by long rod penetrators. Science China Technological Sciences 53 (12):3189–96. doi:10.1007/s11431-010-4101-6.
  • Wen, H. M., Y. He, and B. Lan. 2011. A combined numerical and theoretical study on the penetration of a jacketed rod into semi-infinite targets. International Journal of Impact Engineering 38 (12):1001–10. doi:10.1016/j.ijimpeng.2011.07.001.
  • Weston, G. M. 1992. Flow stress of shock-hardened Remco iron over strain rates from 0.001 to 9000 s−1. Journal of Materials Science Letters 11 (20):1361–3. doi:10.1007/BF00729362.
  • Zine, A., A. A. Bousahla, F. Bourada, K. H. Benrahou, and T. Abdelouahed. 2020. Bending analysis of functionally graded porous plates via a refined shear deformation theory. Computers and Concrete 26 (1):63–74.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.