212
Views
1
CrossRef citations to date
0
Altmetric
Articles

A numerical insight into stress mode shapes of rectangular thin-plate structures

ORCID Icon, , &
Pages 2655-2680 | Received 21 Jul 2020, Accepted 14 Mar 2021, Published online: 27 Mar 2021

References

  • Alencar, G., A. M. de Jesus, R. A. Calçada, and J. G. da Silva. 2018. Fatigue life evaluation of a composite steel-concrete roadway bridge through the hot-spot stress method considering progressive pavement deterioration. Engineering Structures 166:46–61. doi:10.1016/j.engstruct.2018.02.058.
  • Alqam, H. M., and A. K. Dhingra. 2019. Frequency response-based indirect load identification using optimum placement of strain gages and accelerometers. Journal of Vibration and Acoustics 141 (3):031013. doi:10.1115/1.4042709.
  • Avitabile, P., and P. Pingle. 2012. Prediction of full field dynamic strain from limited sets of measured data. Shock and Vibration 19 (5):765–85. doi:10.3233/sav-2012-0686.
  • Baqersad, J., and K. Bharadwaj. 2018. Strain expansion-reduction approach. Mechanical Systems and Signal Processing 101:156–67. doi:10.1016/j.ymssp.2017.08.023.
  • Benasciutti, D. 2014. Some analytical expressions to measure the accuracy of the “equivalent von Mises stress” in vibration multiaxial fatigue. Journal of Sound and Vibration 333 (18):4326–40. doi:10.1016/j.jsv.2014.04.047.
  • Benasciutti, D., F. Sherratt, and A. Cristofori. 2016. Recent developments in frequency domain multi-axial fatigue analysis. International Journal of Fatigue 91:397–413. doi:10.1016/j.ijfatigue.2016.04.012.
  • Benasciutti, D., and R. Tovo. 2018. Frequency-based analysis of random fatigue loads: Models, hypotheses, reality. Materialwissenschaft Und Werkstofftechnik 49 (3):345–67. doi:10.1002/mawe.201700190.
  • Bendat, J. S., and A. G. Piersol. 2010. Random data: Analysis and measurement procedures. 4th ed. Hoboken, NJ: John Wiley & Sons.
  • Bernasconi, O., and D. J. Ewins. 1989. Modal strain/stress fields. The International Journal of Analytical and Experimental Modal Analysis 4 (2):68–76.
  • Bonte, M. H. A., A. de Boer, and R. Liebregts. 2007. Determining the von Mises stress power spectral density for frequency domain fatigue analysis including out-of-phase stress components. Journal of Sound and Vibration 302 (1–2):379–86. doi:10.1016/j.jsv.2006.11.025.
  • Braccesi, C., F. Cianetti, G. Lori, and D. Pioli. 2008. An equivalent uniaxial stress process for fatigue life estimation of mechanical components under multiaxial stress conditions. International Journal of Fatigue 30 (8):1479–97. doi:10.1016/j.ijfatigue.2007.09.011.
  • Braccesi, C., F. Cianetti, G. Lori, and D. Pioli. 2015. Random multiaxial fatigue: A comparative analysis among selected frequency and time domain fatigue evaluation methods. International Journal of Fatigue 74:107–18. doi:10.1016/j.ijfatigue.2015.01.003.
  • Braccesi, C., F. Cianetti, and L. Tomassini. 2016. An innovative modal approach for frequency domain stress recovery and fatigue damage evaluation. International Journal of Fatigue 91:382–96. doi:10.1016/j.ijfatigue.2016.02.028.
  • Braccesi, C., F. Cianetti, and L. Tomassini. 2017. Fast evaluation of stress state spectral moments. International Journal of Mechanical Sciences 127:4–9. doi:10.1016/j.ijmecsci.2016.11.007.
  • Braccesi, C., G. Morettini, F. Cianetti, and M. Palmieri. 2018. Development of a new simple energy method for life prediction in multiaxial fatigue. International Journal of Fatigue 112:1–8. doi:10.1016/j.ijfatigue.2018.03.003.
  • Brincker, R., and C. E. Ventura. 2015. Introduction to operational modal analysis. Chichester: John Wiley & Sons.
  • Česnik, M., J. Slavič, and M. Boltežar. 2012. Uninterrupted and accelerated vibrational fatigue testing with simultaneous monitoring of the natural frequency and damping. Journal of Sound and Vibration 331 (24):5370–82. doi:10.1016/j.jsv.2012.06.022.
  • Česnik, M., J. Slavič, P. Čermelj, and M. Boltežar. 2013. Frequency-based structural modification for the case of base excitation. Journal of Sound and Vibration 332 (20):5029–39. doi:10.1016/j.jsv.2013.04.038.
  • Chen, Y., D. Joffre, and P. Avitabile. 2018. Underwater dynamic response at limited points expanded to full-field strain response. Journal of Vibration and Acoustics 140 (5):051016. doi:10.1115/1.4039800.
  • Cui, H., X. Xu, W. Peng, Z. Zhou, and M. Hong. 2018. A damage detection method based on strain modes for structures under ambient excitation. Measurement 125:438–46. doi:10.1016/j.measurement.2018.05.004.
  • Derkevorkian, A., S. F. Masri, J. Alvarenga, H. Boussalis, J. Bakalyar, and W. L. Richards. 2013. Strain-based deformation shape-estimation algorithm for control and monitoring applications. AIAA Journal 51 (9):2231–40. doi:10.2514/1.J052215.
  • Dhingra, A. K., T. G. Hunter, and D. K. Gupta. 2013. Load recovery in components based on dynamic strain measurements. Journal of Vibration and Acoustics 135 (5):051020–1–8. doi:10.1115/1.4024384.
  • Doebling, S. W., C. R. Farrar, and M. B. Prime. 1998. A summary review of vibration-based damage identification methods. The Shock and Vibration Digest 30 (2):91–105. doi:10.1177/058310249803000201.
  • dos Santos, F. L. M., and B. Peeters. 2016. On the use of strain sensor technologies for strain modal analysis: Case studies in aeronautical applications. The Review of Scientific Instruments 87 (10):102506 doi:10.1063/1.4965814.
  • Erturk, A., P. A. Tarazaga, J. R. Farmer, and D. J. Inman. 2009. Effect of strain nodes and electrode configuration on piezoelectric energy harvesting from cantilevered beams. Journal of Vibration and Acoustics 131 (1):011010–1–11. doi:10.1115/1.2981094.
  • Esposito, M., and M. Gherlone. 2020. Composite wing box deformed-shape reconstruction based on measured strains: Optimization and comparison of existing approaches. Aerospace Science and Technology 99:105758. doi:10.1016/j.ast.2020.105758.
  • Ewins, D. J. 1984. Modal testing: Theory and practice. Letchworth: Research studies press.
  • Fan, W., and P. Qiao. 2011. Vibration-based damage identification methods: A review and comparative study. Structural Health Monitoring 10 (1):83–111. doi:10.1177/1475921710365419.
  • Fei, Q., D. Jiang, X. Han, and S. Wu. 2013. A two-step method for determination of mode order in structural damage identification. Journal of Vibroengineering 15 (1):247–53.
  • Gautrelet, C., L. Khalij, A. Appert, and R. Serra. 2019. Linearity investigation from a vibratory fatigue bench. Mechanics & Industry 20 (1):101. doi:10.1051/meca/2018044.
  • Gherlone, M., P. Cerracchio, and M. Mattone. 2018. Shape sensing methods: Review and experimental comparison on a wing-shaped plate. Progress in Aerospace Sciences 99:14–26. doi:10.1016/j.paerosci.2018.04.001.
  • Guo, N., Z. Yang, L. Wang, and X. Bian. 2019. A updating method using strain frequency response function with emphasis on local structure. Mechanical Systems and Signal Processing 115:637–56. doi:10.1016/j.ymssp.2018.06.025.
  • Habtour, E., W. S. Connon, M. F. Pohland, S. C. Stanton, M. Paulus, and A. Dasgupta. 2014. Review of response and damage of linear and nonlinear systems under multiaxial vibration. Shock and Vibration 2014:1–21. (Article ID 294271):21 pages. doi:10.1155/2014/294271.
  • Hachemi, M., and S. M. Hamza-Cherif. 2020. Free vibration of composite laminated plate with complicated cutout. Mechanics Based Design of Structures and Machines 48 (2):192–216. doi:10.1080/15397734.2019.1633341.
  • He, J., and Z. F. Fu. 2001. Modal analysis. Oxford: Butterworth-Heinemann.
  • Jeong, S. H., J. W. Lee, G. H. Yoon, and D. H. Choi. 2018. Topology optimization considering the fatigue constraint of variable amplitude load based on the equivalent static load approach. Applied Mathematical Modelling 56:626–47. doi:10.1016/j.apm.2017.12.017.
  • Jiang, X., B. Li, X. Mao, Y. Peng, and S. He. 2019. New approach based on operational strain modal analysis to identify dynamical properties of the high-speed reciprocating operation mechanism. Journal of Low Frequency Noise, Vibration and Active Control 38 (3–4):1345–62. doi:10.1177/1461348418821203.
  • Kang, L.-H., D.-K. Kim, and J.-H. Han. 2007. Estimation of dynamic structural displacements using fiber Bragg grating strain sensors. Journal of Sound and Vibration 305 (3):534–42. doi:10.1016/j.jsv.2007.04.037.
  • Khiem, N. T., H. T. Tran, and D. Nam. 2020. Modal analysis of cracked continuous Timoshenko beam made of functionally graded material. Mechanics Based Design of Structures and Machines 48 (4):459–79. doi:10.1080/15397734.2019.1639518.
  • Kranjc, T., J. Slavič, and M. Boltežar. 2016. A comparison of strain and classic experimental modal analysis. Journal of Vibration and Control 22 (2):371–81. doi:10.1177/1077546314533137.
  • Li, Y. Y., L. Cheng, L. H. Yam, and W. O. Wong. 2002. Identification of damage locations for plate-like structures using damage sensitive indices: Strain modal approach. Computers & Structures 80 (25):1881–94. doi:10.1016/S0045-7949(02)00209-2.
  • Lisitano, D., J. Slavič, E. Bonisoli, and M. Boltežar. 2020. Strain proportional damping in Bernoulli-Euler beam theory. Mechanical Systems and Signal Processing 145:106907. doi:10.1016/j.ymssp.2020.106907.
  • Li, X. Y., L. X. Wang, S. S. Law, and Z. H. Nie. 2017. Covariance of dynamic strain responses for structural damage detection. Mechanical Systems and Signal Processing 95 (95):90–105. doi:10.1016/j.ymssp.2017.03.020.
  • Li, F., H. Wu, and P. Wu. 2021. Vibration fatigue dynamic stress simulation under non-stationary state. Mechanical Systems and Signal Processing 146:107006. doi:10.1016/j.ymssp.2020.107006.
  • Maes, K., A. Iliopoulos, W. Weijtjens, C. Devriendt, and G. Lombaert. 2016. Dynamic strain estimation for fatigue assessment of an offshore monopile wind turbine using filtering and modal expansion algorithms. Mechanical Systems and Signal Processing 76–77:592–611. doi:10.1016/j.ymssp.2016.01.004.
  • Mishra, B. B., A. Kumar, and U. Topal. 2020. Stochastic normal mode frequency analysis of hybrid angle ply laminated composite skew plate with opening using a novel approach. Mechanics Based Design of Structures and Machines :1–35. doi:10.1080/15397734.2020.1840393.
  • Mršnik, M., J. Slavič, and M. Boltežar. 2016. Multiaxial vibration fatigue-A theoretical and experimental comparison. Mechanical Systems and Signal Processing 76-77:409–23. doi:10.1016/j.ymssp.2016.02.012.
  • Mršnik, M., J. Slavič, and M. Boltežar. 2018. Vibration fatigue using modal decomposition. Mechanical Systems and Signal Processing 98:548–56. doi:10.1016/j.ymssp.2017.03.052.
  • Németh, R. K., and B. B. Geleji. 2021. Modal truncation damping in reduced modal analysis of piecewise linear continuum structures. Mechanics Based Design of Structures and Machines :1–24. doi:10.1080/15397734.2021.1874414.
  • Niesłony, A. 2010. Comparison of some selected multiaxial fatigue failure criteria dedicated for spectral method. Journal of Theoretical and Applied Mechanics 48 (1):233–54.
  • Niesłony, A., M. Böhm, and R. Owsiński. 2020. Formulation of multiaxial fatigue failure criteria for spectral method. International Journal of Fatigue 135:105519. doi:10.1016/j.ijfatigue.2020.105519.
  • Palmieri, M., M. Česnik, J. Slavič, F. Cianetti, and M. Boltežar. 2017. Non-Gaussianity and non-stationarity in vibration fatigue. International Journal of Fatigue 97:9–19. doi:10.1016/j.ijfatigue.2016.12.017.
  • Pelayo, F., A. Skafte, M. L. Aenlle, and R. Brincker. 2015. Modal analysis based stress estimation for structural elements subjected to operational dynamic loadings. Experimental Mechanics 55 (9):1791–802. doi:10.1007/s11340-015-0073-6.
  • Preumont, A., and V. Piéfort. 1994. Predicting random high-cycle fatigue life with finite elements. Journal of Vibration and Acoustics 116 (2):245–8. doi:10.1115/1.2930420.
  • Rovšček, D., J. Slavič, and M. Boltežar. 2013. The use of strain sensors in an experimental modal analysis of small and light structures with free–free boundary conditions. Journal of Vibration and Control 19 (7):1072–9. doi:10.1177/1077546312445058.
  • Segalman, D., G. Reese, R. Field, and C. Fulcher. 2000. Estimating the probability distribution of von mises stress for structures undergoing random excitation. Journal of Vibration and Acoustics 122 (1):42–8. doi:10.1115/1.568442.
  • Shadan, F., F. Khoshnoudian, and A. Esfandiari. 2018. Structural damage identification based on strain frequency response functions. International Journal of Structural Stability and Dynamics 18 (12):1850159. doi:10.1142/S0219455418501596.
  • Silva, C. W. d. 2000. Vibration: Fundamentals and practice. Boca Raton, FL: CRC Press.
  • Singh, M. P., M. Z. Elbadawy, and S. S. Bisht. 2018. Dynamic strain response measurement-based damage identification in structural frames. Structural Control and Health Monitoring 25 (7):e2181. doi:10.1002/stc.2181.
  • Skafte, A., M. L. Aenlle, and R. Brincker. 2016. A general procedure for estimating dynamic displacements using strain measurements and operational modal analysis. Smart Materials and Structures 25 (2):025020. doi:10.1088/0964-1726/25/2/025020.
  • Sun, W., X. Yan, and F. Gao. 2018. Analysis of frequency-domain vibration response of thin plate attached with viscoelastic free layer damping. Mechanics Based Design of Structures and Machines 46 (2):209–24. doi:10.1080/15397734.2017.1327359.
  • Tabatabaei, S. J. S., and A. M. Fattahi. 2020. A finite element method for modal analysis of FGM plates. Mechanics Based Design of Structures and Machines :1–12. doi:10.1080/15397734.2020.1744004.
  • Tamarozzi, T., G. H. K. Heirman, and W. Desmet. 2014. An on-line time dependent parametric model order reduction scheme with focus on dynamic stress recovery. Computer Methods in Applied Mechanics and Engineering 268 (268):336–58. doi:10.1016/j.cma.2013.09.021.
  • Tarpø, M., B. Nabuco, C. Georgakis, and R. Brincker. 2020. Expansion of experimental mode shape from operational modal analysis and virtual sensing for fatigue analysis using the modal expansion method. International Journal of Fatigue 130:105280. doi:10.1016/j.ijfatigue.2019.105280.
  • Ugras, R. C., O. K. Alkan, S. Orhan, M. Kutlu, and A. Mugan. 2019. Real time high cycle fatigue estimation algorithm and load history monitoring for vehicles by the use of frequency domain methods. Mechanical Systems and Signal Processing 118:290–304. doi:10.1016/j.ymssp.2018.08.043.
  • Wang, T., O. Celik, F. N. Catbas, and L. M. Zhang. 2016. A frequency and spatial domain decomposition method for operational strain modal analysis and its application. Engineering Structures 114:104–12. doi:10.1016/j.engstruct.2016.02.011.
  • Wang, X., C. Jin, and Z. Yuan. 2020. Free vibration of FGM annular sectorial plates with arbitrary boundary supports and large sector angles. Mechanics Based Design of Structures and Machines :1–21. doi:10.1080/15397734.2020.1717342.
  • Wang, Z., M. Liu, Z. Zhu, Y. Qu, Q. Wei, Z. Zhou, Y. Tan, Z. Yu, and F. Yang. 2019. Clamp looseness detection using modal strain estimated from FBG based operational modal analysis. Measurement 137:82–97. doi:10.1016/j.measurement.2019.01.051.
  • Xia, Y., H. Ma, and D. Su. 2013. Strain mode based damage assessment for plate like structures. Journal of Vibroengineering 15 (1):37–45.
  • Xie, C. H., and P. Xue. 2016. An accurate and efficient computational method for structural dynamic stresses under random loading. Aerospace Science and Technology 59 (59):11–7. doi:10.1016/j.ast.2016.10.004.
  • Xu, W., W. Zhu, M. Cao, H. Wu, and R. Zhu. 2020. A novel damage index for damage detection and localization of plate-type structures using twist derivatives of laser-measured mode shapes. Journal of Sound and Vibration 481:115448. doi:10.1016/j.jsv.2020.115448.
  • Yaich, A., A. E. Hami, L. Walha, and M. Haddar. 2017. Local multiaxial fatigue damage estimation for structures under random vibrations. Finite Elements in Analysis and Design 132:1–7. doi:10.1016/j.finel.2017.04.003.
  • Yam, L. Y., T. P. Leung, D. B. Li, and K. Z. Xue. 1996. Theoretical and experimental study of modal strain analysis. Journal of Sound and Vibration 191 (2):251–60. doi:10.1006/jsvi.1996.0119.
  • Yu, M., J. Guo, and K. M. Lee. 2018. A modal expansion method for displacement and strain field reconstruction of a thin-wall component during machining. IEEE/ASME Transactions on Mechatronics 23 (3):1028–37. doi:10.1109/TMECH.2018.2790922.
  • Zhang, X. H., S. Zhu, Y. L. Xu, and X. J. Homg. 2011. Integrated optimal placement of displacement transducers and strain gauges for better estimation of structural response. International Journal of Structural Stability and Dynamics 11 (3):581–602. doi:10.1142/S0219455411004221.
  • Zhou, Y. 2020. Local finite element refinement for accurate dynamic stress via modal information only. AIAA Journal 58 (8):3593–606. doi:10.2514/1.J058947.
  • Zhou, Y., Q. Fei, and S. Wu. 2017. Utilization of modal stress approach in random-vibration fatigue evaluation. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 213 (14):2603–15.
  • Zhou, Y., and J. Tao. 2019. Theoretical and numerical investigation of stress mode shapes in multi-axial random fatigue. Mechanical Systems and Signal Processing 127 (127):499–512. doi:10.1016/j.ymssp.2019.03.015.
  • Zhou, Y., S., Wu, N. Trisovic, Q. Fei, and Z. Tan, and 2016. Modal strain based method for dynamic design of plate-like structures. Shock and Vibration 2016:1–10. doi:10.1155/2016/2050627.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.