135
Views
11
CrossRef citations to date
0
Altmetric
Articles

An investigation of stored energy in uniaxial and biaxial directional rolling on mechanical properties and microstructure of pure copper

, &
Pages 2831-2843 | Received 23 Oct 2020, Accepted 23 Mar 2021, Published online: 14 Apr 2021

References

  • Babaei, H., and A. Darvizeh. 2011. Investigation into the response of fully clamped circular steel, copper, and aluminum plates subjected to shock loading. Mechanics Based Design of Structures and Machines 39 (4):507–26. doi:10.1080/15397734.2011.583204.
  • Benchabane, G., Z. Boumerzoug, T. Gloriant, and I. Thibon. 2011. Microstructural characterization and recrystallization kinetics of cold rolled copper. Physica B: Condensed Matter 406 (10):1973–6. doi:10.1016/j.physb.2011.02.068.
  • Bhattacharjee, P. P., M. Joshi, V. P. Chaudhary, and M. Zaid. 2013. The effect of starting grain size on the evolution of microstructure and texture in nickel during processing by cross-rolling. Materials Characterization 76:21–7. doi:10.1016/j.matchar.2012.11.005.
  • Crussard, C., F. Aubertin, B. Faoul, and G. Wyon. 1950. Polygonization in strongly deformed metals. Progress in Metal Physics 2:193–202. doi:10.1016/0502-8205(50)90010-4.
  • Chapman, D. 1998. High conductivity coppers for electrical engineering. Copper Development Association Publication 122: 1–80.
  • Davim, J. P. 2011. Modern manufacturing engineering. Switzerland: Springer International Publishing Switzerland 2015.
  • Decker, F., and D. Harker. 1950. Recrystallization in rolled copper. Transactions AIME 188 (June):887–90.
  • Dieter, G. E. 1988. Mechanical metallurgy. London: McGraw-Hill Book Company.
  • Gordon, P. 1955. Microcalorimetric investigation of recrystallization of copper. JOM 7 (9):1043–52. doi:10.1007/BF03377610.
  • Gurao, N. P., S. Sethuraman, and S. Suwas. 2011. Effect of strain path change on the evolution of texture and microstructure during rolling of copper and nickel. Materials Science and Engineering: A 528 (2526):7739–50. doi:10.1016/j.msea.2011.06.062.
  • Hansen, N. 1985. Polycrystalline strengthening. Metallurgical Transactions A 16 (12):2167–90. doi:10.1007/BF02670417.
  • Hansen, N. 1992. Deformation microstructures. Scripta Metallurgica et Materialia 27 (11):1447–52. doi:10.1016/0956-716X(92)90125-X.
  • Hansen, N., and T. Leffers. 1988. Microstructures, textures and mechanical properties after large strain. Revue de Physique Appliquée 23 (4):519–31. doi:10.1051/rphysap:01988002304051900.
  • Hansen, N., R. F. Mehl, and A. Medalist. 2001. New discoveries in deformed metals. Metallurgical and Materials Transactions A 32 (12):2917–35. doi:10.1007/s11661-001-0167-x.
  • Harshavardhana, N., M. P. Gururajan, and P. Pant. 2019. Microstructure engineering to optimize hardness and conductivity in electrolytic tough pitch copper. Metallurgical and Materials Transactions A 50 (8):3566–77. doi:10.1007/s11661-019-05315-9.
  • Harshavardhana, N., S. P. S. S. Sivam, G. Kumar, and A. K. Saxena. 2020. A comparative study on misorientations to determine the extent of recrystallization in pure ETP copper. Physics of Metals and Metallography (in press).
  • Hatherly, M., and A. S. Malin. 1979. Deformation of copper and low stacking-fault energy, copper base alloys. Metals Technology 6 (1):308–19. doi:10.1179/030716979803276309.
  • Hirsch, J., and K. Lücke. 1988. Mechanism of deformation and development of rolling textures in polycrystalline FCC metals I. Description of rolling texture development in homogeneous CuZn alloys. Acta Metallurgica 36 (11):2863–82. doi:10.1016/0001-6160(88)90172-1.
  • Hong, S. H., and D. N. Lee. 2002. Deformation and recrystallization textures in cross-rolled copper sheet. Journal of Engineering Materials and Technology 124 (1):13–22. doi:10.1115/1.1419017.
  • Humphreys, F. J., and M. Hatherly. 2004. Recrystallization and related annealing phenomena. In ELSEVIER Ltd (Issue 2). London: Elsevier Ltd.
  • Lu, L., M. L. Sui, and K. Lu. 2001. Cold rolling of bulk nanocrystalline copper. Acta Materialia 49 (19):4127–34. doi:10.1016/S1359-6454(01)00248-8.
  • Malin, A. S., and M. Hatherly. 1979. Microstructure of cold-rolled copper. Metal Science 13 (8):463–72. doi:10.1179/030634579790438363.
  • Mandal, D., and I. Baker. 1995. Determination of the stored energy and recrystallization temperature as a function of depth after rolling of polycrystalline copper. Scripta Metallurgica et Materialia 33 (4):645–50. doi:10.1016/0956-716X(95)00272-W.
  • Mishin, O. V., and G. Gottstein. 1998. Microstructural aspects of rolling deformation in ultrafine-grained copper. Philosophical Magazine A 78 (2):373–88. doi:10.1080/01418619808241909.
  • Nestorovic, S. D., I. I. Markovic, and D. D. Markovic. 2011. Influence of thermo cyclic treatment on the anneal hardening effect of cast CuAl and CuZn alloys. Trends in Development of Machinaries and Associated Technology” TMT 2011, September, 153–57.
  • Ostafin, M., J. Pospiech, and R. A. Schwarzer. 2005. Microstructure and texture in copper sheets after reverse and cross rolling. Solid State Phenomena 105:309–14. doi:10.4028/www.scientific.net/SSP.105.309.
  • Davis, J. R. 2001. Copper and copper alloys. In ASM speciality handbook. USA: ASM International.
  • Reed-Hill, R. E. 1973. Physical metallurgy principles. USA: Litton Educational Publishing, INC.
  • Segarra, M., M. Martínez, M. A. Fernández, J. M. Chimenos, F. Espiell, N. Sirvent, and O. Guixà. 2005. Kinetic equation describing the annealing process of copper. Journal of Materials Science 40 (17):4483–7. doi:10.1007/s10853-005-3936-x.
  • Sourmail, T., P. Opdenacker, G. Hopkin, and H. K. D. H. Bhadeshia. n.d. Annealing twins. UK: Materials Science & Metallurgy, University of Cambridge. https://www.phase-trans.msm.cam.ac.uk/index.html.
  • Sun, M., C. Zheng, F. Du, and Z. Zhu. 2020. A novel design of electromagnetic side sealing in twin-roll strip cast-rolling process. Mechanics Based Design of Structures and Machines 0 (0):1–18.
  • Suwas, S., and N. P. Gurao. 2014. Development of microstructures and textures by cross rolling. In Comprehensive materials processing (Vol. 3, Issue 30). Elsevier. doi:10.1016/B978-0-08-096532-1.00308-3.
  • Suwas, S., A. K. Singh, K. Narasimha Rao, and T. Singh. 2002. Effect of modes of rolling on evolution of the texture in pure copper and some copper-base alloys. Part I: rolling texture. Zeitschrift Für Metallkunde 93 (9):918–27. doi:10.3139/146.020918.
  • Thompson, J. G. 1934. Effect of cold-rolling on the indentation hardness of copper. Journal of Research of the National Bureau of Standards 13 (5):745–56. doi:10.6028/jres.013.054.
  • Wang, Q., B. Jiang, L. Liu, Q. Yang, D. Xia, D. Zhang, G. Huang, and F. Pan. 2020. Reduction per pass effect on texture traits and mechanical anisotropy of Mg–Al–Zn–Mn–Ca alloy subjected to unidirectional and cross rolling. Journal of Materials Research and Technology 9 (5):9607–19. doi:10.1016/j.jmrt.2020.06.093.
  • Wright, S. I., and R. J. Larsen. 2002. Extracting twins from orientation imaging microscopy scan data. Journal of Microscopy 205 (Pt 3):245–52. doi:10.1046/j.1365-2818.2002.00992.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.