103
Views
2
CrossRef citations to date
0
Altmetric
Articles

Multibody system design based on reference dynamic characteristics: gyroscopic system paradigm

ORCID Icon &
Pages 3372-3394 | Received 21 Nov 2020, Accepted 26 Apr 2021, Published online: 14 May 2021

References

  • Banerjee, J. M., and J. McPhee. 2013. Symbolic sensitivity analysis of multibody systems. Computational Methods in Applied Sciences 123–46.
  • Bestle, D., and P. Eberhard. 1992. Analyzing and optimizing multibody systems. Mechanics of Structures and Machines 20 (1):67–92. doi:10.1080/08905459208905161.
  • Butikov, E. 2006. Precession and nutation of a gyroscope. European Journal of Physics 27 (5):1071–81. doi:10.1088/0143-0807/27/5/006.
  • Docquier, N., A. Poncelet, and P. Fisette. 2013. ROBOTRAN: A powerful symbolic gnerator of multibody models. Mechanical Sciences 4 (1):199–219. doi:10.5194/ms-4-199-2013.
  • Dopico, D., Y. Zhu, A. Sandu, and C. Sandu. 2014. Direct and adjoint sensitivity analysis of ordinary differential equation multibody formulations. Journal of Computational and Nonlinear Dynamics 10 (1):011012. doi:10.1115/1.4026492.
  • Haug, E. J. 2018. An index 0 differential-algebraic equation formulation for multibody dynamics: Nonholonomic constraints. Mechanics Based Design of Structures and Machines 46 (1):38–65. doi:10.1080/15397734.2016.1273783.
  • He, Y., and J. McPhee. 2005. Multidisciplinary optimization of multibody systems with application to the design of rail vehicles. Multibody System Dynamics 14 (2):111–35. doi:10.1007/s11044-005-4310-0.
  • Kellogg, H. D. 1965. Gyroscopic inertial space drive. US Patent 3,203,644. Accessed August 31, 1965. https://patents.google.com/patent/US3203644A/en#patentCitations.
  • Kim, H. W., and W. S. Yoo. 2013. MBD applications in design. International Journal of Non-Linear Mechanics 53:55–62. doi:10.1016/j.ijnonlinmec.2012.10.008.
  • Korkealaakso, P., A. Mikkola, T. Rantalainen, and A. Rouvinen. 2009. Description of joint constraints in the floating frame of reference formulation. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics 223 (2):133–45. doi:10.1243/14644193JMBD170.
  • Lawrence, A. 1998. Modern inertial technology: Navigation, guidance, and control, 2nd ed. New York, NY: Springer.
  • Lim, J.-H., S.-C. Jo, D.-S. Bae, and H.-J. Cho. 2018. A Jacobian formulation for efficient simulation of multibody chain dynamics. Journal of Mechanical Science and Technology 32 (8):3745–54. doi:10.1007/s12206-018-0727-2.
  • Nachbagauer, K., S. Oberpeilsteiner, K. Sherif, and W. Steiner. 2015. The use of the adjoint method for solving typical optimization problems in multibody dynamics. Journal of Computational and Nonlinear Dynamics 10 (6):061011. doi:10.1115/1.4028417.
  • Nachbagauer, K., S. Oberpeilsteiner, and W. Steiner. 2015. Enhancement of the adjoint method by error control of accelerations for parameter identification in multibody dynamics. Universal Journal of Control and Automation 3 (3):47–52. doi:10.13189/ujca.2015.030302.
  • Nada, A. 2007. Flexible robotic manipulators: Modeling, simulation and control with experimentation. PhD thesis, Mechanical Design and Production Engineering, Cairo University, Egypt.
  • Nada, A. A., and A. H. Bashiri. 2017. Selective generalized coordinates partitioning method for multibody systems with non-holonomic constraints. In Volume 6: 13th International Conference on Multibody Systems, Nonlinear Dynamics, and Control; August; American Society of Mechanical Engineers, Cleveland, OH. doi:10.1115/DETC2017-67476.
  • Nada, A., and A. Bishiri. 2019. Floating frame of reference formulation for modeling flexible multi-body systems in premise operational conditions. Journal of Vibration and Control 25 (21–22):2706–20. doi:10.1177/1077546319867787.
  • Nada, A. A., B. A. Hussein, S. M. Megahed, and A. A. Shabana. 2010. Use of the floating frame of reference formulation in large deformation analysis: Experimental and numerical validation. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics 224 (1):45–58. doi:10.1243/14644193JMBD208.
  • Nada, A. A., B. A. Hussein, S. M. Megahed, and A. A. Shabana. 2009. Floating frame of reference and absolute nodal coordinate formulations in the large deformation analysis of robotic manipulators: A comparative experimental and numerical study. In Volume 4: 7th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Parts A, B and C, San Diego, CA; Vol. 4; August 2016; 889–900. doi:10.1115/DETC2009-86675.
  • Ng, T. 2005. An experiment on the gyroscopic effect. Experimental Techniques 29 (4):22–5. doi:10.1111/j.1747-1567.2005.tb00226.x.
  • Ozgoren, M. K. 2019. Comparative study of attitude control methods based on Euler angles, quaternions, angleaxis pairs and orientation matrices. Transactions of the Institute of Measurement and Control 41 (5):1189–206. doi:10.1177/0142331218773519.
  • Pappalardo, C., and D. Guida. 2018. Use of the adjoint method for controlling the mechanical vibrations of nonlinear systems. Machines 6 (2):19. doi:10.3390/machines6020019.
  • Passaro, V. M. N., A. Cuccovillo, L. Vaiani, M. De Carlo, and C. E. Campanella. 2017. Gyroscope technology and applications: A review in the industrial perspective. Sensors 17 (10):2284. octdoi:10.3390/s17102284.
  • Pichler, F., W. Witteveen, and P. Fischer. 2017. A complete strategy for efficient and accurate multibody dynamics of flexible structures with large lap joints considering contact and friction. Multibody System Dynamics 40 (4):407–36. doi:10.1007/s11044-016-9555-2.
  • Rulka, W. 1990. SIMPACK: A computer program for simulation of large-motion multibody systems. In Multibody systems handbook, ed. W. Schiehlen, 265–84. Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Ryan, R. R. 1990. ADAMS multibody system analysis software. In Multibody systems handbook, ed. W. Schiehlen, 361–402. Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Saleh, M., A. Nada, A. El-Betar, and A. El-Assal. 2017. Computational design scheme for wind turbine drive-train based on lagrange multipliers. Journal of Energy 2017:1–16. doi:10.1155/2017/4027834.
  • Serban, R., and J. S. Freeman. 2001. Identification and identifiability of unknown parameters in multibody dynamic systems. Multibody System Dynamics 5 (4):335–50. doi:10.1023/A:1011434711375.
  • Serban, R., and E. J. Haug. 1998. Kinematic and kinetic derivatives in multibody system analysis. Mechanics of Structures and Machines 26 (2):145–73. doi:10.1080/08905459808945425.
  • Shabana, A. A. 2009. Computational dynamics, 3rd ed. Chichester, UK: John Wiley & Sons, Ltd.
  • Shabana, A. A. 2013. Dynamics of multibody systems. Cambridge: Cambridge University Press.
  • Shabana, A. A. 2014. Euler parameters kinetic singularity. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-Body Dynamics 228 (3):307–13. sepdoi:10.1177/1464419314539301.
  • Shabana, A. A., M. H. Zaher, A. M. Recuero, and C. Rathod. 2011. Study of nonlinear system stability using eigenvalue analysis: Gyroscopic motion. Journal of Sound and Vibration 330 (24):6006–22. doi:10.1016/j.jsv.2011.07.010.
  • Trindade, M. A., and R. Sampaio. 2001. On the numerical integration of rigid body nonlinear dynamics in presence of parameters singularities. Journal of the Brazilian Society of Mechanical Sciences 23 (1):49–62. doi:10.1590/S0100-73862001000100005.
  • Uchida, T., C. P. Vyasarayani, M. Smart, and J. McPhee. 2014. Parameter identification for multibody systems expressed in differential-algebraic form. Multibody System Dynamics 31 (4):393–403. doi:10.1007/s11044-013-9390-7.
  • Usubamatov, R. 2016. A mathematical model for motions of gyroscope suspended from flexible cord. Cogent Engineering 3 (1):1245901. doi:10.1080/23311916.2016.1245901.
  • Vyasarayani, C. P., T. Uchida, A. Carvalho, and J. McPhee. 2011. Parameter identification in dynamic systems using the homotopy optimization approach. Multibody System Dynamics 26 (4):411–24. doi:10.1007/s11044-011-9260-0.
  • Vyasarayani, C. P., T. Uchida, and J. McPhee. 2012. Nonlinear parameter identification in multibody systems using homotopy continuation. Journal of Computational and Nonlinear Dynamics 7 (1):011012. doi:10.1115/1.4004885.
  • Wang, X., E. J. Haug, and W. Pan. 2005. Implicit numerical integration for design sensitivity analysis of rigid multibody systems. Mechanics Based Design of Structures and Machines 33 (1):1–30. doi:10.1081/SME-200045801.
  • Weidemann, C. 2010. State-of-the-art railway vehicle design with multi-body simulation. Journal of Mechanical Systems for Transportation and Logistics 3 (1):12–26. doi:10.1299/jmtl.3.12.
  • Xu, M., C. Llu, and R. L. Huston. 1990. Analysis of non-linearly constrained non-holonomic multibody systems. International Journal of Non-Linear Mechanics 25 (5):511–9. jandoi:10.1016/0020-7462(90)90015-2.
  • Zhu, Y., C. Sandu, D. Dopico, and A. Sandu. 2018. Benchmarking of adjoint sensitivity-based optimization techniques using a vehicle ride case study. Mechanics Based Design of Structures and Machines 46 (2):254–66. doi:10.1080/15397734.2017.1338576.
  • Zhu, Y., D. Dopico, C. Sandu, and A. Sandu. 2014. MBSVT: Software for modeling, sensitivity analysis, and optimization of multibody systems at Virginia Tech. In Volume 7: 2nd Biennial International Conference on Dynamics for Design; 26th International Conference on Design Theory and Methodology; August; American Society of Mechanical Engineers, Buffalo, NY. doi:10.1115/DETC2014-34084.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.