420
Views
2
CrossRef citations to date
0
Altmetric
Articles

An innovative torsional vibration absorber of vehicle powertrain system: Prototype design, performance test, and control experiment

, , &
Pages 3434-3466 | Received 04 Jan 2021, Accepted 07 May 2021, Published online: 26 May 2021

References

  • Aksoy, T., G. O. Özgen, and B. Acar. 2020. Design of a tuned vibration absorber for a slender hollow cylindrical structure. Mechanics Based Design of Structures and Machines 48 (5):615–648. doi:10.1080/15397734.2019.1657889.
  • Albanese, A. M., and K. Cunefare. 2003. The temporal and spatial effects of a magnetorheological elastomer in squeeze mode. The Journal of the Acoustical Society of America 114 (4):2419. doi:10.1121/1.4778670.
  • Bai, X. X., F. L. Xin, L. J. Qian, et al. 2015. Design and control of a magnetorheological elastomer dynamic vibration absorber for powertrain mount systems of automobiles. ASME 2015 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Colorado Springs, CO, USA. V001T03A014-V001T03A014.
  • Chen, J. R. 2005. Automobile structure. Beijing, CHN: China Machine Press.
  • Crowther, A. R. 2004. Transient vibration in powertrain systems with automatic transmissions. PhD diss., University of Technology Sydney.
  • Deng, L. 2016. Design torsional vibration damper of engine based on classical optimal approach. Machinery Design & Manufacture 5:265–268.
  • Ding, W. J. 1988. Vibration damping theory. Beijing, CHN: Tsinghua University Press.
  • Frahm, H. 1911. Device for damping vibrations of bodies. US Patent 989,958, issued April 18, 1911.
  • Fu, J., P. Li, G. Liao, J. Lai, and M. Yu. 2017. Development and dynamic characterization of a mixed mode magnetorheological elastomer isolator. IEEE Transactions on Magnetics 53 (1):1–4. doi:10.1109/TMAG.2016.2606406.
  • Gao, P., H. Liu, C. Xiang, P. Yan, and T. Mahmoud. 2021. A new magnetorheological elastomer torsional vibration absorber: Structural design and performance test. Mechanical Sciences 12 (1):321–332. doi:10.5194/ms-12-321-2021.
  • Gao, P., C. Xiang, H. Liu, P. Walker, and H. Zhou. 2019. Vibration reduction performance parameters matching for adaptive tunable vibration absorber. Journal of Intelligent Material Systems and Structures 30 (2):198–212. doi:10.1177/1045389X18810808.
  • Ginder, J. M., W. F. Schlotter, and M. E. Nichols. 2001. Magnetorheological elastomers in tunable vibration absorbers. Proceedings of SPIE 4331 (1):103–110.
  • Han, S. T., and Z. Y. Hao. 2001. Mode analysis of three-dimensional finite element and experimental study on a 6102B diesel engine Crankshaft. Transactions of the Chinese Society for Agricultural Machinery 32 (4):74–77.
  • Hoang, N., N. Zhang, W. H. Li, and H. Du. 2013. Development of a torsional dynamic absorber using a magnetorheological elastomer for vibration reduction of a powertrain test rig. Journal of Intelligent Material Systems and Structures 24 (16):2036–2044. doi:10.1177/1045389X13489361.
  • Hoang, N. 2011. An adaptive tunable vibration absorber using magnetorheological elastomers for vibration control of vehicle powertrains. PhD diss., University of Technology Sydney.
  • Huang, Q., T. Lin, and S. Mehran. 2020. Flow-induced vibration attenuation of a viscoelastic pipe conveying fluid under sinusoidal flow using a nonlinear absorber. Mechanics Based Design of Structures and Machines doi:10.1080/15397734.2020.1760881.
  • Kumbhar, S. B., S. P. Chavan, and S. S. Gawade. 2018. Adaptive tuned vibration absorber based on magnetorheological elastomer-shape memory alloy composite. Mechanical Systems and Signal Processing 100:208–223. doi:10.1016/j.ymssp.2017.07.027.
  • Lerner, A. A., and K. A. Cunefare. 2008. Performance of MRE-based vibration absorbers. Journal of Intelligent Material Systems and Structures 19 (5):551–563. doi:10.1177/1045389X07077850.
  • Liu, J., and K. Liu. 2006. A tunable electromagnetic vibration absorber: Characterization and application. Journal of Sound and Vibration 295 (3–5):708–724. doi:10.1016/j.jsv.2006.01.033.
  • Liu, H., X. Wang, and F. Liu. 2018. Stiffness and vibration isolation characteristics of a torsional isolator with negative stiffness structure. Journal of Vibroengineering 20 (1):401–416. doi:10.21595/jve.2017.18781.
  • Ni, Z. C., X. L. Gong, J. F. Li, and L. Chen. 2009. Study on a dynamic stiffness-tuning absorber with squeeze-strain enhanced magnetorheological elastomer. Journal of Intelligent Material Systems and Structures 20 (10):1195–1202. doi:10.1177/1045389X09104790.
  • Qian, L.-J., F.-L. Xin, X.-X. Bai, and N. M. Wereley. 2017. State observation–based control algorithm for dynamic vibration absorbing systems featuring magnetorheological elastomers: Principle and analysis. Journal of Intelligent Material Systems and Structures 28 (18):2539–2556. doi:10.1177/1045389X17692047.
  • Rustighi, E., M. J. Brennan, and B. R. Mace. 2005. Real-time control of a shape memory alloy adaptive tuned vibration absorber. Smart Materials and Structures 14 (6):1184–1195. doi:10.1088/0964-1726/14/6/011.
  • Shi, W. K., Y. Long, and Y. Lu. 2009. Study on multistage non-linear dual mass flywheel damper. Journal of Vibration and Shock 28 (5):92–96.
  • Shi, H. F., M. Yu, M. Zhu, J. Fu, S. B. Choi, and Z. W. Xing. 2016. An investigation of the dynamic behaviors of an MRE isolator subjected to constant and alternating currents. Smart Materials and Structures 25 (7):077002. doi:10.1088/0964-1726/25/7/077002.
  • Shui, X., and S. Wang. 2018. Investigation on a mechanical vibration absorber with tunable piecewise-linear stiffness. Mechanical Systems and Signal Processing 100:330–343. doi:10.1016/j.ymssp.2017.05.046.
  • Song, L. Q., L. Li, Y. M. Li, et al. 2012. Study on design theory of dual mass flywheel based on shape constraint. Journal of Mechanical Engineering 48 (1):111–118. doi:10.3901/JME.2012.01.111.
  • Sun, S., H. Deng, J. Yang, W. Li, H. Du, and G. Alici. 2015. Performance evaluation and comparison of magnetorheological elastomer absorbers working in shear and squeeze modes. Journal of Intelligent Material Systems and Structures 26 (14):1757–1763. doi:10.1177/1045389X14568819.
  • Von Lockette, P. R., J. Kadlowec, and J. H. Koo. 2005. Development of tunable vibration absorbers using magnethorheological elastomers with bimodal particle distributions. Proceedings of the 168th Technical Meeting of Rubber Division. Pittsburgh, PA, USA: American Chemical Society.
  • Walker, P. D., N. Zhang, and R. Tamba. 2011. Control of gear shifts in dual clutch transmission powertrains. Mechanical Systems and Signal Processing 25 (6):1923–1936. doi:10.1016/j.ymssp.2010.08.018.
  • Watson, J. R. 1997. Method and apparatus for varying the stiffness of a suspension bushing. US Patent 5,609,353, filed January 11, 1996, and issued March 11, 1997.
  • Williams, K. A., G. T. C. Chiu, and R. J. Bernhard. 2005. Dynamic modelling of a shape memory alloy adaptive tuned vibration absorber. Journal of Sound and Vibration 280 (1–2):211–234. doi:10.1016/j.jsv.2003.12.040.
  • Xiang, C., P. Gao, H. Liu, and H. Zhou. 2018. Experimental and theoretical study of temperature-dependent variable stiffness of magnetorheological elastomers. International Journal of Materials Research 109 (2):113–128. doi:10.3139/146.111590.
  • Xiang, C., and C. Geng. 2004. Analysis and calculation on dynamic characteristics of Geislinger coupling. Journal of Machine Design 21 (8):24–26.
  • Xin, F. L., X. X. Bai, and L. J. Qian. 2017. Principle, modeling, and control of a magnetorheological elastomer dynamic vibration absorber for powertrain mount systems of automobiles. Journal of Intelligent Material Systems and Structures 28 (16):2239–2254. doi:10.1177/1045389X16672731.
  • Xu, Z. 2010. Study on adaptive tuned vibration absorbing technology. PhD diss., University of Science and Technology of China.
  • Yan, T. H., and R. M. Lin. 2004. Dual-mass dynamic absorber for the head actuator assembly in hard disk drives. Mechanics Based Design of Structures and Machines 32 (2):119–132. doi:10.1081/SME-120030552.
  • Yan, T. H., H. Y. Pu, C. Xu, Q. Li, R. M. Lin, and X. D. Chen. 2010. Dynamic absorber design for actuator arm of hard disk drives to improve impact resistance. Mechanics Based Design of Structures and Machines 38 (1):50–73. doi:10.1080/15397730903389634.
  • Yildirim, T., M. H. Ghayesh, W. Li, and G. Alici. 2016a. Nonlinear dynamics of a parametrically excited beam with a central magneto-rheological elastomer patch: An experimental investigation. International Journal of Mechanical Sciences 106:157–167. doi:10.1016/j.ijmecsci.2015.11.032.
  • Yildirim, T., M. H. Ghayesh, W. Li, and G. Alici. 2016b. Experimental nonlinear dynamics of a geometrically imperfect magneto-rheological elastomer sandwich beam. Composite Structures 138:381–390. doi:10.1016/j.compstruct.2015.11.063.
  • Yu, M., and B. Ju. 2011. Dynamic mechanical properties testing for shear mode of magnetorheological elastomer. Journal of Functional Materials 42 (11):1939–1942.
  • Zhang, J. Q., Z. Z. Feng, and Q. Jing. 2009. Optimization analysis of a new vane MRF damper. Journal of Physics: Conference Series. IOP Publishing 149 (1):012087.
  • Zhang, W., X. L. Gong, and L. Chen. 2010. A Gaussian distribution model of anisotropic magnetorheological elastomers. Journal of Magnetism and Magnetic Materials 322 (23):3797–3801. doi:10.1016/j.jmmm.2010.08.004.
  • Zhang, N., N. Hoang, and H. P. Du. 2008. A novel dynamic absorber using enhanced magnetorheological elastomers for powertrain vibration control. Advanced Materials Research 47:117–120.
  • Zhang, X. Z., and W. H. Li. 2009. Adaptive tuned dynamic vibration absorbers working with MR elastomers. Smart Structures and Systems 5 (5):517–529. doi:10.12989/sss.2009.5.5.517.
  • Zhou, H., H. Liu, P. Gao, and C.-L. Xiang. 2018. Optimization design and performance analysis of vehicle powertrain mounting system. Chinese Journal of Mechanical Engineering 31 (1):1–13. doi:10.1186/s10033-018-0237-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.