209
Views
6
CrossRef citations to date
0
Altmetric
Articles

Effect of reinforced cutouts on the buckling and vibration performance of hybrid fiber metal laminates

, &
Pages 3986-4006 | Received 26 Dec 2020, Accepted 24 Jun 2021, Published online: 19 Jul 2021

References

  • Achour, B., D. Ouinas, M. Touahmia, and M. Boukendakdji. 2018. Buckling of hybrid composite carbon/epoxy/aluminum plates with cutouts. Engineering, Technology & Applied Science Research 8 (1):2393–8. doi:10.48084/etasr.1224.
  • Allahbakhsh, H., and A. Dadrasi. 2012. Buckling analysis of laminated composite panel with elliptical cutout subject to axial compression. Modelling and Simulation in Engineering 2012:2012;171953. doi:10.1155/2012/171953.
  • Banat, D., Z. Kolakowski, and R. J. Mania. 2016. Investigations of FML profile buckling and post-buckling behaviour under axial compression. Thin-Walled Structures 107:335–44. doi:10.1016/j.tws.2016.06.018.
  • Bikakis, G. S. E., C. D. Kalfountzos, and E. E. Theotokoglou. 2019. Elastic buckling response of rectangular GLARE fiber-metal laminates subjected to shearing stresses. Aerospace Science and Technology 87:110–8. doi:10.1016/j.ast.2019.02.020.
  • Biswas, D., and C. Ray. 2019. Comparative study on transient response analysis of hybrid laminated composite plates with experimental verification. Journal of Sound and Vibration 453:43–64. doi:10.1016/j.jsv.2019.04.007.
  • Bodaghi, M., and A. R. Saidi. 2011. Stability analysis of functionally graded rectangular plates under nonlinearly varying in-plane loading resting on elastic foundation. Archive of Applied Mechanics 81 (6):765–80. doi:10.1007/s00419-010-0449-0.
  • Butalia, T. S., T. Kant, and V. D. Dixit. 1990. Performance of heterosis element for bending of skew rhombic plates. Computers & Structures 34 (1):23–49. doi:10.1016/0045-7949(90)90298-G.
  • Chai, G. B., K. T. Ooi, and P. W. Khong. 1993. Buckling strength optimization of laminated composite plates. Computers & Structures 46 (1):77–82. doi:10.1016/0045-7949(93)90169-E.
  • Chen, C.-S., A.-H. Tan, J.-Y. Kao, and W.-R. Chen. 2017. Hygrothermal effects on dynamic instability of hybrid composite plates. International Journal of Structural Stability and Dynamics 17 (1):1750001–23. doi:10.1142/S0219455417500018.
  • Chen, C. S., T. C. Tsai, T. J. Chen, and W. R. Chen. 2017. Vibration and stability of initially stressed hybrid composite plates in hygrothermal environments. Mechanics of Composite Materials 53 (4):441–56. doi:10.1007/s11029-017-9674-8.
  • Cihan, M., A. J. Sobey, and J. I. R. Blake. 2019. Mechanical and dynamic performance of woven flax/E-glass hybrid composites. Composites Science and Technology 172:36–42. doi:10.1016/j.compscitech.2018.12.030.
  • Jiao, P., Z. Chen, F. Xu, X. Tang, and W. Su. 2018. Effects of ringed stiffener on the buckling behavior of cylindrical shells with cutout under axial compression: Experimental and numerical investigation. Thin-Walled Structures 123:232–43. doi:10.1016/j.tws.2017.11.013.
  • Kang, J. H., and A. W. Leissa. 2005. Exact solutions for the buckling of rectangular plates having linearly varying in-plane loading on two opposite simply supported edges. International Journal of Solids and Structures 42 (14):4220–38. doi:10.1016/j.ijsolstr.2004.12.011.
  • Kumar Panda, S., and L. S. Ramachandra. 2010. Buckling of rectangular plates with various boundary conditions loaded by non-uniform inplane loads. International Journal of Mechanical Sciences 52 (6):819–28. doi:10.1016/j.ijmecsci.2010.01.009.
  • Leissa, A. W., and J. H. Kang. 2002. Exact solutions for vibration and buckling of an SS-C-SS-C rectangular plate loaded by linearly varying in-plane stresses. International Journal of Mechanical Sciences 44 (9):1925–45. doi:10.1016/S0020-7403(02)00069-3.
  • Liew, K. M., K. C. Hung, and M. K. Lim. 1993. A continuum three-dimensional vibration analysis of thick rectangular plates. International Journal of Solids and Structures 30 (24):3357–79. doi:10.1016/0020-7683(93)90089-P.
  • Liew, K. M. 1996. Solving the vibation of thick symmetric laminates by Reissner/Mindlin plate theory and the p-Ritz method. Journal of Sound and Vibration 198 (3):343–60. doi:10.1006/jsvi.1996.0574.
  • Maharudra, Rajanna T., and B. Arya. 2021. Influence of trapezoidal shapes and cutout sizes on the buckling behaviour of composite laminates under thermally induced loads. Latin American Journal of Solids and Structures 18 (3). doi:10.1590/1679-78256331.
  • Mallela, U. K., and A. Upadhyay. 2006. Buckling of laminated composite stiffened panels subjected to in-plane shear: A parametric study. Thin-Walled Structures 44 (3):354–61. doi:10.1016/j.tws.2006.03.008.
  • Mallela, U. K., and A. Upadhyay. 2014. Buckling of laminated composite stiffened panels subjected to linearly varying in-plane edge loading. International Journal for Computational Methods in Engineering Science and Mechanics 15 (1):33–44. doi:10.1080/15502287.2013.834000.
  • Mallikarjuna, P., and T. Kant. 1989. Free vibration of symmetrically laminated plates using a higher-order theory with finite element technique. International Journal for Numerical Methods in Engineering 28 (8):1875–89. doi:10.1002/nme.1620280812.
  • Narayana, A. L., K. Rao, and R. V. Kumar. 2014. Buckling analysis of rectangular composite plates with rectangular cutout subjected to linearly varying in-plane loading using fem. Sadhana – Sadhana 39 (3):583–96. doi:10.1007/s12046-014-0250-9.
  • Patel, S. N., and A. H. Sheikh. 2016. Buckling response of laminated composite stiffened plates subjected to partial in-plane edge loading. International Journal for Computational Methods in Engineering Science and Mechanics 17 (5–6):322–38. doi:10.1080/15502287.2016.1231235.
  • Rajanna, T., S. Banerjee, Y. M. Desai, and D. L. Prabhakara. 2017. Effect of boundary conditions and non-uniform edge loads on buckling characteristics of laminated composite panels with and without cutout. International Journal for Computational Methods in Engineering Science and Mechanics 18 (1):64–76. doi:10.1080/15502287.2016.1276350.
  • Rajanna, T., S. Banerjee, Y. M. Desai, and D. L. Prabhakara. 2018. Effect of reinforced cutouts and ply-orientations on buckling behavior of composite panels subjected to non-uniform edge loads. International Journal of Structural Stability and Dynamics 18 (4):1850058–23. doi:10.1142/S021945541850058X.
  • Rayhan, S. B. 2021. Elastic buckling response of a composite panel stiffened around cutouts. International Journal of Engineering, Transactions A: Basics 34 (1):243–52. doi:10.5829/IJE.2021.34.01A.27.
  • Reddy, J. N. 1979. Free vibration of antisymmetric, angle-ply laminated plates including transverse shear deformation by the finite element method. Journal of Sound and Vibration 66 (4):565–76. doi:10.1016/0022-460X(79)90700-4.
  • Reddy, J. N., and N. D. Phan. 1985. Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory. Journal of Sound and Vibration 98 (2):157–70. doi:10.1016/0022-460X(85)90383-9.
  • Shojaee, T., B. Mohammadi, and R. Madoliat. 2020. Experimental and numerical investigation of stiffener effects on buckling strength of composite laminates with circular cutout. Journal of Composite Materials 54 (9):1141–60. doi:10.1177/0021998319874101.
  • Shojaee, T., B. Mohammadi, R. Madoliat, and D. Salimi-Majd. 2019. Development of a finite strip method for efficient prediction of buckling and post-buckling in composite laminates containing a cutout with/without stiffener. Composite Structures 210:538–52. doi:10.1016/j.compstruct.2018.11.007.
  • Sinmazçelik, T., E. Avcu, M. Ö. Bora, and O. Çoban. 2011. A review: Fibre metal laminates, background, bonding types and applied test methods. Materials & Design 32 (7):3671–85. doi:10.1016/j.matdes.2011.03.011.
  • Soni, G., R. Singh, and M. Mitra. 2013. Buckling behavior of composite laminates (with and without cutouts) subjected to nonuniform in-plane loads. International Journal of Structural Stability and Dynamics 13 (8):1350044–20. doi:10.1142/S0219455413500442.
  • Srinivas, S., C. V. Joga Rao, and A. K. Rao. 1970. An exact analysis for vibration of simply-supported homogeneous and laminated thick rectangular plates. Journal of Sound and Vibration 12 (2):187–99. doi:10.1016/0022-460X(70)90089-1.
  • Srivastava, A. K. L. 2012. Vibration of stiffened plates with cutout subjected to partial edge loading. Journal of the Institution of Engineers (India): Series A 93 (2):129–35. doi:10.1007/s40030-012-0018-3.
  • Subash Chandra, K. S., T. Rajanna, and K. Venkata Rao. 2021. Effect of sinusoidal and inverse sinusoidal in-plane loads on buckling and vibration characteristics of FRP panels with cutouts. Materials Today: Proceedings 45:48–53. doi:10.1016/j.matpr.2020.09.231.
  • Swaminathan, K., H. Sachin, and T. Rajanna. 2021. Buckling analysis of functionally graded materials by dynamic approach. Materials Today: Proceedings 45:172–8. doi:10.1016/j.matpr.2020.10.412.
  • Vummadisetti, S., and S. B. Singh. 2020. Buckling and postbuckling response of hybrid composite plates under uniaxial compressive loading. Journal of Building Engineering 27:101002. doi:10.1016/j.jobe.2019.101002.
  • Wang, X., Y. Zuo, and Y. Lin. 2020. Structural-acoustic modeling and analysis of carbon/glass fiber hybrid composite laminates. International Journal of Structural Stability and Dynamics 20 (04):2050048. doi:10.1142/S0219455420500480.
  • Wu, W., Q. Wang, and W. Li. 2018. Comparison of tensile and compressive properties of carbon/glass interlayer and intralayer hybrid composites. Materials 11 (7):1105. doi:10.3390/ma11071105.
  • Yathish Muddappa, P. P., G. Giridhara, and T. Rajanna. 2021d. Effect of localized edge loads on the buckling behaviour of hybrid fibre metal laminates. Materials Today Proceedings. doi:10.1016/j.matpr.2021.05.387.
  • Yathish Muddappa, P. P., G. Giridhara, and T. Rajanna. 2021a. Buckling behavior of GLARE panels subjected to partial edge loads. Materials Today: Proceedings 45:94–9. doi:10.1016/j.matpr.2020.10.099.
  • Yathish Muddappa, P. P., G. Giridhara, and T. Rajanna. 2021b. Buckling behavior of interlaminar hybrid fiber metal laminate (HFMLs) subjected to uniaxial compressive loading. Materials Today: Proceedings 45:128–32. doi:10.1016/j.matpr.2020.10.111.
  • Yathish Muddappa, P. P., T. Rajanna, and G. Giridhara. 2021c. Effects of different interlaminar hybridization and localized edge loads on the vibration and buckling behavior of fiber metal composite laminates. Composites Part C: Open Access 4:100084. doi:10.1016/j.jcomc.2020.100084.
  • Yin, S., T. Yu, T. Q. Bui, P. Liu, and S. Hirose. 2016. Buckling and vibration extended isogeometric analysis of imperfect graded Reissner–Mindlin plates with internal defects using NURBS and level sets. Computers & Structures 177:23–38. doi:10.1016/j.compstruc.2016.08.005.
  • Yu, T., T. Q. Bui, S. Yin, D. H. Doan, C. T. Wu, T. V. Do, and S. Tanaka. 2016b. On the thermal buckling analysis of functionally graded plates with internal defects using extended isogeometric analysis. Composite Structures 136:684–95. doi:10.1016/j.compstruct.2015.11.002.
  • Yu, T., S. Yin, T. Q. Bui, S. Xia, S. Tanaka, and S. Hirose. 2016a. NURBS-based isogeometric analysis of buckling and free vibration problems for laminated composites plates with complicated cutouts using a new simple FSDT theory and level set method. Thin-Walled Structures 101:141–56. doi:10.1016/j.tws.2015.12.008.
  • Zhang, J., T. Yu, and T. Q. Bui. 2021. Composite FG plates with different internal cutouts: Adaptive IGA buckling analysis without trimmed surfaces. Composite Structures 259:113392. doi:10.1016/j.compstruct.2020.113392.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.