137
Views
2
CrossRef citations to date
0
Altmetric
Articles

Dynamic instability, free vibration, and buckling analysis of MR fluid sandwich plates with FG face layers using the HSDT-based finite strip method

, ORCID Icon, &
Pages 4560-4587 | Received 10 Apr 2021, Accepted 12 Aug 2021, Published online: 30 Aug 2021

References

  • Arefi, M., and F. Najafitabar. 2021. Buckling and free vibration analyses of a sandwich beam made of a soft core with FG-GNPs reinforced composite face-sheets using Ritz Method. Thin-Walled Structures 158:107200. doi: 10.1016/j.tws.2020.107200.
  • Arumugam, A. B., M. Ramamoorthy, V. Rajamohan, M. S, and R. K. S. 2019. Dynamic characterization and parametric instability analysis of rotating magnetorheological fluid composite sandwich plate subjected to periodic in-plane loading. Journal of Sandwich Structures & Materials 21 (6):2099–126. doi: 10.1177/1099636218762690.
  • Ashtiani, M., S. Hashemabadi, and A. Ghaffari. 2015. A review on the magnetorheological fluid preparation and stabilization. Journal of Magnetism and Magnetic Materials 374:716–30. doi: 10.1016/j.jmmm.2014.09.020.
  • Bolotin, VVe. 1962. The dynamic stability of elastic systems. Vol. 2. AEROSPACE CORP EL SEGUNDO CA;
  • Choi, Y., A. Sprecher, and H. Conrad. 1990. Vibration characteristics of a composite beam containing an electrorheological fluid. Journal of Intelligent Material Systems and Structures 1 (1):91–104. doi: 10.1177/1045389X9000100106.
  • Chooi, W. W., and S. O. Oyadiji. 2008. Design, modelling and testing of magnetorheological (MR) dampers using analytical flow solutions. Computers & Structures 86 (3–5):473–82. doi: 10.1016/j.compstruc.2007.02.002.
  • Ebrahimi, F., and S. B. Sedighi. 2020. Wave dispersion characteristics of a rectangular sandwich composite plate with tunable magneto-rheological fluid core rested on a visco-Pasternak foundation. Mechanics Based Design of Structures and Machines 1–14. doi: 10.1080/15397734.2020.1716244.
  • Eshaghi, M. 2020. Optimal core design of MR based smart panels subject of flutter instability. Mechanics Based Design of Structures and Machines 1–20. doi: 10.1080/15397734.2020.1843488.
  • Eshaghi, M., R. Sedaghati, and S. Rakheja. 2015. The effect of magneto-rheological fluid on vibration suppression capability of adaptive sandwich plates: Experimental and finite element analysis. Journal of Intelligent Material Systems and Structures 26 (14):1920–35. doi: 10.1177/1045389X15586449.
  • Fadaee, M., and M. Talebitooti. 2019. Dynamic stability of the rotating carbon nanotube-reinforced adaptive sandwich beams with magnetorheological elastomer core. Journal of Sandwich Structures & Materials. doi: 10.1177/1099636219849414.
  • Formica, G., W. Lacarbonara, and R. Alessi. 2010. Vibrations of carbon nanotube-reinforced composites. Journal of Sound and Vibration 329 (10):1875–89. doi: 10.1016/j.jsv.2009.11.020.
  • Frostig, Y., and O. T. Thomsen. 2004. High-order free vibration of sandwich panels with a flexible core. International Journal of Solids and Structures 41 (5-6):1697–724. doi: 10.1016/j.ijsolstr.2003.09.051.
  • Gholamzadeh Babaki, M., and M. Shakouri. 2019. Free and forced vibration of sandwich plates with electrorheological core and functionally graded face layers. Mechanics Based Design of Structures and Machines 1–18. doi: 10.1080/15397734.2019.1698436.
  • Ghorbanpour Arani, A.,. H. BabaAkbar Zarei, M. Eskandari, and P. Pourmousa. 2019. Vibration behavior of visco-elastically coupled sandwich beams with magnetorheological core and three-phase carbon nanotubes/fiber/polymer composite facesheets subjected to external magnetic field. Journal of Sandwich Structures & Materials 21 (7):2194–218. doi: 10.1177/1099636217743177.
  • Ghorbanpour Arani, A.,. H. BabaAkbar Zarei, and E. Haghparast. 2018. Vibration response of viscoelastic sandwich plate with magnetorheological fluid core and functionally graded-piezoelectric nanocomposite face sheets. Journal of Vibration and Control 24 (21):107754631774750–85. doi: 10.1177/1077546317747501.
  • Hasheminejad, S. M., and M. Maleki. 2009. Free vibration and forced harmonic response of an electrorheological fluid-filled sandwich plate. Smart Materials and Structures 18 (5):055013. doi: 10.1088/0964-1726/18/5/055013.
  • Hemmatian, M., R. Sedaghati, and S. Rakheja. 2020. Characterization and modeling of temperature effect on the shear mode properties of magnetorheological elastomers. Smart Materials and Structures 29 (11):115001. doi: 10.1088/1361-665X/abb359.
  • Hoseinzadeh, M., and J. Rezaeepazhand. 2018. Dynamic stability enhancement of laminated composite sandwich plates using smart elastomer layer. Journal of Sandwich Structures & Materials 22 (8). doi: 10.1177/1099636218819158.
  • Lara-Prieto, V., R. Parkin, M. Jackson, V. Silberschmidt, and Z. Kęsy. 2010. Vibration characteristics of MR cantilever sandwich beams: Experimental study. Smart Materials and Structures 19 (1):015005. doi: 10.1088/0964-1726/19/1/015005.
  • Manoharan, R., R. Vasudevan, and A. Jeevanantham. 2014. Dynamic characterization of a laminated composite magnetorheological fluid sandwich plate. Smart Materials and Structures 23 (2):025022. doi: 10.1088/0964-1726/23/2/025022.
  • Mohammadimehr, M.,. N. B. Rousta, and A. A. Ghorbanpour. 2014. Eshelby-mori-tanaka and the extended mixture rule approaches for nonlocal vibration of piezoelectric nanocomposite plate with considering surface stress and magnetic field effects. Journal of Nanostructures 4 (3):347–67.
  • Patel, R. 2011. Mechanism of chain formation in nanofluid based MR fluids. Journal of Magnetism and Magnetic Materials 323 (10):1360–3. doi: 10.1016/j.jmmm.2010.11.046.
  • Rajamohan, V., S. Rakheja, and R. Sedaghati. 2010. Vibration analysis of a partially treated multi-layer beam with magnetorheological fluid. Journal of Sound and Vibration 329 (17):3451–69. doi: 10.1016/j.jsv.2010.03.010.
  • Rajamohan, V., R. Sedaghati, and S. Rakheja. 2010. Vibration analysis of a multi-layer beam containing magnetorheological fluid. Smart Materials and Structures 19 (1):015013. doi: 10.1088/0964-1726/19/1/015013.
  • Rosenfeld, N. C., and N. M. Wereley. 2004. Volume-constrained optimization of magnetorheological and electrorheological valves and dampers. Smart Materials and Structures 13 (6):1303–13. doi: 10.1088/0964-1726/13/6/004.
  • Selvaraj, R., and M. Ramamoorthy. 2020. Experimental and finite element vibration analysis of CNT reinforced MR elastomer sandwich beam. Mechanics Based Design of Structures and Machines 1–13. doi: 10.1080/15397734.2020.1778487.
  • Selvaraj, R., M. Subramani, and M. Ramamoorthy. 2021. Vibration characteristics and optimal design of composite sandwich beam with partially configured hybrid MR-Elastomers. Mechanics Based Design of Structures and Machines :1–17. doi: 10.1080/15397734.2021.1891548.
  • Shafiei, Z., S. Sarrami-Foroushani, F. Azhari, and M. Azhari. 2020. Application of modified couple-stress theory to stability and free vibration analysis of single and multi-layered graphene sheets. Aerospace Science and Technology 98:105652. doi: 10.1016/j.ast.2019.105652.
  • Tabassian, R., and J. Rezaeepazhand. 2013. Dynamic stability of smart sandwich beams with electro-rheological core resting on elastic foundation. Journal of Sandwich Structures & Materials 15 (1):25–44. doi: 10.1177/1099636212461494.
  • Talebitooti, M., and M. Fadaee. 2019. Effects of carbon nanotube reinforcements on vibration suppression of magnetorheological fluid sandwich beam. Journal of Intelligent Material Systems and Structures 30 (7):1053–69. doi: 10.1177/1045389X19828830.
  • Talha, M., and B. Singh. 2010. Static response and free vibration analysis of FGM plates using higher order shear deformation theory. Applied Mathematical Modelling 34 (12):3991–4011. doi: 10.1016/j.apm.2010.03.034.
  • Teng, M. W., and Y. Q. Wang. 2021. Nonlinear forced vibration of simply supported functionally graded porous nanocomposite thin plates reinforced with graphene platelets. Thin-Walled Structures 164:107799. doi: 10.1016/j.tws.2021.107799.
  • Wang, Z.-X., and H.-S. Shen. 2012. Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets. Composites Part B: Engineering 43 (2):411–21. doi: 10.1016/j.compositesb.2011.04.040.
  • Wang, Y., H. Wu, F. Yang, and Q. Wang. 2021. An efficient method for vibration and stability analysis of rectangular plates axially moving in fluid. Applied Mathematics and Mechanics 42:291–308.
  • Wang, Y. Q., C. Ye, and J. Zhu. 2020. Chebyshev collocation technique for vibration analysis of sandwich cylindrical shells with metal foam core. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 100 (5):e201900199.
  • Wang, Y. Q., C. Ye, and J. W. Zu. 2019. Vibration analysis of circular cylindrical shells made of metal foams under various boundary conditions. International Journal of Mechanics and Materials in Design 15 (2):333–44. doi: 10.1007/s10999-018-9415-8.
  • Wang, Y., C. Ye, and J. Zu. 2018. Identifying the temperature effect on the vibrations of functionally graded cylindrical shells with porosities. Applied Mathematics and Mechanics 39 (11):1587–604. doi: 10.1007/s10483-018-2388-6.
  • Yalcintas, M., and J. P. Coulter. 1995. Electrorheological material based adaptive beams subjected to various boundary conditions. Journal of Intelligent Material Systems and Structures 6 (5):700–17. doi: 10.1177/1045389X9500600511.
  • Yang, F. L., and Y. Q. Wang. 2020. Free and Forced Vibration of Beams Reinforced by 3 D Graphene Foam. International Journal of Applied Mechanics 12 (5):2050056. doi: 10.1142/S1758825120500568.
  • Ye, C., and Y. Q. Wang. 2021. Nonlinear forced vibration of functionally graded graphene platelet-reinforced metal foam cylindrical shells: Internal resonances. Nonlinear Dynamics 104:2051–69.
  • Yeh, J.-Y. 2013. Vibration analysis of sandwich rectangular plates with magnetorheological elastomer damping treatment. Smart Materials and Structures 22 (3):035010. doi: 10.1088/0964-1726/22/3/035010.
  • Yeh, J.-Y., and L.-W. Chen. 2005. Dynamic stability of a sandwich plate with a constraining layer and electrorheological fluid core. Journal of Sound and Vibration 285 (3):637–52. doi: 10.1016/j.jsv.2004.08.033.
  • Yeh, J.-Y., and L.-W. Chen. 2007. Finite element dynamic analysis of orthotropic sandwich plates with an electrorheological fluid core layer. Composite Structures 78 (3):368–76. doi: 10.1016/j.compstruct.2005.10.010.
  • Yeh, Z.-F., and Y.-S. Shih. 2006. Dynamic characteristics and dynamic instability of magnetorheological material-based adaptive beams. Journal of Composite Materials 40 (15):1333–59. doi: 10.1177/0021998306059715.
  • Zarezadeh, E., V. Hosseini, and A. Hadi. 2020. Torsional vibration of functionally graded nano-rod under magnetic field supported by a generalized torsional foundation based on nonlocal elasticity theory. Mechanics Based Design of Structures and Machines 48 (4):480–95. doi: 10.1080/15397734.2019.1642766.
  • Zhu, P., Z. Lei, and K. M. Liew. 2012. Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Composite Structures 94 (4):1450–60. doi: 10.1016/j.compstruct.2011.11.010.
  • Zhu, Y., P. Shi, Y. Kang, and B. Cheng. 2019. Isogeometric analysis of functionally graded plates with a logarithmic higher order shear deformation theory. Thin-Walled Structures 144:106234. doi: 10.1016/j.tws.2019.106234.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.