635
Views
13
CrossRef citations to date
0
Altmetric
Articles

Vibration response analysis of sigmoidal functionally graded piezoelectric (FGP) porous plate under thermo-electric environment

ORCID Icon & ORCID Icon
Pages 4604-4634 | Received 15 Jun 2021, Accepted 18 Aug 2021, Published online: 22 Sep 2021

References

  • Ait Atmane, H., A. Tounsi, and F. Bernard. 2017. Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations. International Journal of Mechanics and Materials in Design 13 (1):71–84. doi:10.1007/s10999-015-9318-x.
  • Amabili, M. 2008. Nonlinear vibrations and stability of shells and plates. New York: Cambridge University Press.
  • Barati, M. R., and A. M. Zenkour. 2018. Electro-thermoelastic vibration of plates made of porous functionally graded piezoelectric materials under various boundary conditions. Journal of Vibration and Control 24 (10):1910–26. doi:10.1177/1077546316672788.
  • Bathe, K. J. 1996. Finite element procedures. New Jersey: Prentic-Hall.
  • Behjat, B., and M. R. Khoshravan. 2012. Geometrically nonlinear static and free vibration analysis of functionally graded piezoelectric plates. Composite Structures 94 (3):874–82. doi:10.1016/j.compstruct.2011.08.024.
  • Bergan, P. G., and R. W. Clough. 1972. Convergence criteria of the iteration process. The American Institute of Aeronautics and Astronautics - AIAA. 10 (8):1107–8. doi:10.2514/3.50313.
  • Carrera, E., S. Brischetto, M. Cinefra, and M. Soave. 2011. Erects of thickness stretching in functionally graded plates and shells. Composites Part B: Engineering 42 (2):123–33. doi:10.1016/j.compositesb.2010.10.005.
  • Dastjerdi, S., M. Malikan, R. Dimitri, and F. Tornabene. 2021. Nonlocal elasticity analysis of moderately thick porous functionally graded plates in a hygro-thermal environment. Composite Structures 255:112925. doi:10.1016/j.compstruct.2020.112925.
  • Ebrahimi, F., and M. R. Barati. 2018. Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment. Journal of Vibration and Control 24 (3):549–64. doi:10.1177/1077546316646239.
  • Ebrahimi, F., and M. Zia. 2015. Large amplitude nonlinear vibration analysis of functionally graded Timoshenko beams with porosities. Acta Astronautica 116:117–25. doi:10.1016/j.actaastro.2015.06.014.
  • Ghasemi, H., H. S. Park, and T. Rabczuk. 2018. A multi-material level set-based topology optimization of flexoelectric composites. Computer Methods in Applied Mechanics and Engineering 332:47–62. doi:10.1016/j.cma.2017.12.005.
  • Guo, H., X. Zhuang, and T. Rabczuk. 2019. A deep collocation method for the bending analysis of Kirchhoff plate. Computers, Materials & Continua 59 (2):433–56. doi:10.32604/cmc.2019.06660.
  • Hamdia, K. M., H. Ghasemi, X. Zhuang, N. Alajlan, and T. Rabczuk. 2018. Sensitivity and uncertainty analysis for flexoelectric nanostructures. Computer Methods in Applied Mechanics and Engineering 337:95–109. doi:10.1016/j.cma.2018.03.016.
  • Heydarpour, Y., P. Malekzadeh, R. Dimitri, and F. Tornabene. 2020. Thermoelastic analysis of functionally graded cylindrical panels with piezoelectric layers. Applied Sciences 10 (4):1397. doi:10.3390/app10041397.
  • Huang, X.-L., and H.-S. Shen. 2004. Nonlinear vibration and dynamic response of functionally graded plates in thermal environments. International Journal of Solids and Structures 41 (9–10):2403–27. doi:10.1016/j.ijsolstr.2003.11.012.
  • Jiashi, Y. 2005. An introduction to the theory of piezoelectricity. New York: Springer Science.
  • Juang, L.-H. 2010. Finite element modelling for a piezoelectric ultrasonic system. Measurement 43 (10):1387–97. doi:10.1016/j.measurement.2010.08.002.
  • Karami, B., D. Shahsavari, M. Janghorban, and L. Li. 2019. On the resonance of functionally graded nanoplates using bi-Helmholtz nonlocal strain gradient theory. International Journal of Engineering Science 144:103143. doi:10.1016/j.ijengsci.2019.103143.
  • Kieback, B., A. Neubrand, and H. Riedel. 2003. Processing techniques for functionally graded materials. Materials Science Engineering 362 (1–2):81–106. doi:10.1016/S0921-5093(03)00578-1.
  • Koizumi, M. 1997. FGM activities in Japan. Composites Part B: Engineering 28 (1–2):1–4. doi:10.1016/S1359-8368(96)00016-9.
  • Komijani, M., Y. Kiani, S. E. Esfahani, and M. R. Eslami. 2013. Vibration of thermo-electrically post-buckled rectangular functionally graded piezoelectric beams. Composite Structures 98:143–52. doi:10.1016/j.compstruct.2012.10.047.
  • Kumar, P., and S. Harsha. 2020a. Response analysis of hybrid functionally graded material plate subjected to thermo-electro-mechanical loading. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications doi:10.1177/1464420720980031.
  • Kumar, P., and S. P. Harsha. 2020b. Modal analysis of functionally graded piezoelectric material plates. Materials Today: Proceedings 28:1481–6. doi:10.1016/j.matpr.2020.04.825.
  • Kumar, P., and S. P. Harsha. 2021. Vibration response analysis of exponential functionally graded piezoelectric (EFGP) plate subjected to thermo-electro-mechanical load. Composite Structures 267:113901. doi:10.1016/j.compstruct.2021.113901.
  • Li, L., X. Li, and Y. Hu. 2016. Free vibration analysis of nonlocal strain gradient beams made of functionally graded material. International Journal of Engineering Science 102:77–92. doi:10.1016/j.ijengsci.2016.02.010.
  • Liew, K. M., X. Q. He, and S. Kitipornchai. 2004. Finite element method for the feedback control of FGM shells in the frequency domain via piezoelectric sensors and actuators. Computer Methods in Applied Mechanics and Engineering 193 (3–5):257–73. doi:10.1016/j.cma.2003.09.009.
  • Matsunaga, H. 2008. Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory. Composite Structures 82 (4):499–512. doi:10.1016/j.compstruct.2007.01.030.
  • Merzouki, T., H. M. S. Ahmed, A. Bessaim, M. Haboussi, R. Dimitri, and F. Tornabene. 2021. Bending analysis of functionally graded porous nanocomposite beams based on a non-local strain gradienttheory. Mathematics and Mechanics of Solids. doi:10.1177/10812865211011759.
  • Mouaici, F., S. Benyoucef, H. A. Atmane, and A. Tounsi. 2016. Effect of porosity on vibrational characteristics of non-homogeneous plates using hyperbolic shear deformation theory. Wind and Structures 22 (4):429–54. doi:10.12989/was.2016.22.4.429.
  • Nanthakumar, S. S., T. Lahmer, X. Zhuang, G. Zi, and T. Rabczuk. 2016. Detection of material interfaces using a regularized level set method in piezoelectric structures. Inverse Problems in Science and Engineering 24 (1):153–76. doi:10.1080/17415977.2015.1017485.
  • Phung-Van, P., L. V. Tran, A. J. M. Ferreira, H. Nguyen-Xuan, and M. Abdel-Wahab. 2017. Nonlinear transient isogeometric analysis of smart piezoelectric functionally graded material plates based on generalized shear deformation theory under thermo-electro-mechanical loads. Nonlinear Dynamics 87 (2):879–94. doi:10.1007/s11071-016-3085-6.
  • Reddy, J. N. 2002. Energy principles and variational methods in applied mechanics. John Wiley & Sons.
  • Reddy, J. N. 2004. Mechanics of laminated composite plates and shells: Theory and analysis. 2nd ed. Boca Raton: CRC Press.
  • Reddy, J. N. 2007. Theory and analysis of elastic plates and shells. Boca Raton: CRC Press.
  • Reddy, J. N. 2009. An introduction to finite element method. 3rd ed. New York: Tata McGraw-Hill Edition.
  • Reza, A., F. Ebrahimi, M. Mahdi Kheirikhah, and K. Hosseini Safari. 2020. Buckling analysis of heterogeneous magneto-electro-thermo-elastic cylindrical nanoshells based on nonlocal strain gradient elasticity theory. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2020.1728545.
  • Rubio, W. M., S. L. Vatanabe, G. H. Paulino, and E. C. N. Silva. 2011. Functionally graded piezoelectric material system - a multiphysics perspective. Advanced Computational Materials Modelling: From Classical to Multi-Scale Techniques :301–39. doi:10.1002/9783527632312.ch8.
  • Samaniego, E., C. Anitescu, S. Goswami, V. M. Nguyen-Thanh, H. Guo, K. Hamdia, X. Zhuang, and T. Rabczuk. 2020. An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering 362:112790. doi:10.1016/j.cma.2019.112790.
  • Shahidzadeh Tabatabaei, S. J., and A. M. Fattahi. 2020. A finite element method for modal analysis of FGM plates. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2020.1744004.
  • Singh, S. J., and S. P. Harsha. 2020. Thermo-mechanical analysis of porous sandwich S-FGM plate for different boundary conditions using Galerkin Vlasov's method: A semi-analytical approach. Thin-Walled Structures 150:106668. doi:10.1016/j.tws.2020.106668.
  • Su, Z., G. Jin, and T. Ye. 2018. Electro-mechanical vibration characteristics of functionally graded piezoelectric plates with general boundary conditions. International Journal of Mechanical Sciences 138–139:42–53. doi:10.1016/j.ijmecsci.2018.01.040.
  • Thai, C. H., A. J. M. Ferreira, S. P. A. Bordas, T. Rabczuk, and H. Nguyen-Xuan. 2014. Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory. European Journal of Mechanics - A/Solids 43:89–108. doi:10.1016/j.euromechsol.2013.09.001.
  • Thai, H. T., and D. H. Choi. 2012. A refined shear deformation theory for free vibration of functionally graded plates on elastic foundation. Composites Part B: Engineering 43 (5):2335–47. doi:10.1016/j.compositesb.2011.11.062.
  • Uymaz, B., and M. Aydogdu. 2007. Three-dimensional vibration analyses of functionally graded plates under various boundary conditions. Journal of Reinforced Plastics and Composites 26 (18):1847–63. doi:10.1177/0731684407081351.
  • Vu-Bac, N., T. X. Duong, T. Lahmer, X. Zhuang, R. A. Sauer, H. S. Park, and T. Rabczuk. 2018. A NURBS-based inverse analysis for reconstruction of nonlinear deformations of thin shell structures. Computer Methods in Applied Mechanics and Engineering 331:427–55. doi:10.1016/j.cma.2017.09.034.
  • Wang, Q. 2002. Axi-symmetric wave propagation in a cylinder coated with a piezoelectric layer. International Journal of Solids and Structures 39 (11):3023–37. doi:10.1016/S0020-7683(02)00233-0.
  • Wang, Y. Q., and J. W. Zu. 2017a. Large-amplitude vibration of sigmoid functionally graded thin plates with porosities. Thin-Walled Structures 119:911–24. doi:10.1016/j.tws.2017.08.012.
  • Wang, Y. Q., and J. W. Zu. 2017b. Porosity-dependent nonlinear forced vibration analysis of functionally graded piezoelectric smart material plates Smart Mater. Smart Materials and Structures 26 (10):105014. doi:10.1088/1361-665X/aa8429.
  • Wattanasakulpong, N., and A. Chaikittiratana. 2015. Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: Chebyshev collocation method. Meccanica 50 (5):1331–42. doi:10.1007/s11012-014-0094-8.
  • Wattanasakulpong, N., B. Gangadhara Prusty, D. W. Kelly, and M. Hoffman. 2012. Free vibration analysis of layered functionally graded beams with experimental validation. Materials and Design 36:182–90. doi:10.1016/j.matdes.2011.10.049.
  • Weaver, W., Jr., and P. R. Johnston. 1987. Structural dynamics by finite elements. Englewood Cliffs, NJ: Prentice-Hall, Inc.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.