368
Views
3
CrossRef citations to date
0
Altmetric
Articles

Nonlinear mechanics of a thin-walled honeycomb with zero Poisson’s ratio

, , , , , & show all
Pages 4977-4999 | Received 06 Jun 2021, Accepted 26 Sep 2021, Published online: 09 Oct 2021

References

  • Afonso, F., J. Vale, F. Lau, and A. Suleman. 2017. Performance based multidisciplinary design optimization of morphing aircraft. Aerospace Science and Technology 67:1–12. doi:10.1016/j.ast.2017.03.029.
  • Andersen, G., D. Cowan, and D. Picatak. 2007. Aeroelastic modeling, analysis ana testing of a morphing wing structure. 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 1734. doi:10.2514/6.2007-1734.
  • Banerjee, A., B. Bhattachary, and A. K. Mallik. 2008. Large deflection of cantilever beams with geometric non-linearity: Analytical and numerical approaches. International Journal of Non-Linear Mechanics 43 (5):366–76. doi:10.1016/j.ijnonlinmec.2007.12.020.
  • Bidgoli, E. M., M. Arefi, and M. Mohammadimehr. 2020. Free vibration analysis of honeycomb doubly curved shell integrated with CNT-reinforced piezoelectric layers. Mechanics Based Design of Structures and Machines:1–32. doi:10.1080/15397734.2020.1836969.
  • Bubert, E. A., B. K. S. Woods, K. Lee, C. S. Kothera, and N. M. Wereley. 2010. Design and fabrication of a passive 1D morphing aircraft skin. Journal of Intelligent Material Systems and Structures 21 (17):1699–717. doi:10.1177/1045389X10378777.
  • Chen, J. J., X. Shen, and J. F. Li. 2015. Zero Poisson’s ratio flexible skin for potential two-dimensional wing morphing. Aerospace Science and Technology 45:228–41. doi:10.1016/j.ast.2015.05.011.
  • Deo, A., and W. Yu. 2021. Equivalent plate properties of composite corrugated structures using mechanics of structure genome. International Journal of Solids and Structures 208–209:262–71. doi:10.1016/j.ijsolstr.2020.11.009.
  • Gandhi, F., and P. Anusonti-Inthra. 2008. Skin design studies for variable camber morphing airfoils. Smart Materials and Structures 17 (1):015025–33. doi:10.1088/0964-1726/17/01/015025.
  • Gibson, L. J., and M. F. Ashby. 1997. Cellular solids: Structures and properties. 2nd ed. Oxford: Pergamon Press.
  • Gong, X. B., J. Huang, F. Scarpa, T. J. Liu, and J. S. Leng. 2015. Zero Poisson’s ratio cellular structure for two-dimensional morphing application. Composite Structures 134:384–92. doi:10.1016/j.compstruct.2015.08.048.
  • Hu, M. H., O. T. Xu, L. L. Hu, and T. X. Yu. 2016. Nonlinear shear modulus of re-entrant hexagonal honeycombs under large deformation. International Journal of Solids and Structures 80:284–96. doi:10.1016/j.ijsolstr.2015.11.015.
  • Huang, J., X. Gong, Q. Zhang, F. Scarpa, Y. Liu, and J. Leng. 2016. In-plane mechanics of a novel zero Poisson’s ratio honeycomb core. Composites Part B: Engineering 89:67–76. doi:10.1016/j.compositesb.2015.11.032.
  • Huang, J. L., W. Y. Liu, and A. M. Tang. 2018. Effects of fine-scale features on the elastic properties of zero Poisson’s ratio honeycombs. Materials Science and Engineering: B 236–237:95–103. doi:10.1016/j.mseb.2018.11.005.
  • Jagodzinski, D. J., M. Miksch, Q. Aumann, and G. Müller. 2020. Modeling and optimizing an acoustic metamaterial to minimize low-frequency structure-borne sound. Mechanics Based Design of Structures and Machines:1–15. doi:10.1080/15397734.2020.1787842.
  • Keshavanarayana, S. R., H. Shahverdi, A. Kothare, C. Yang, and J. Bingenheimer. 2017. The effect of node bond adhesive fillet on uniaxial in-plane responses of hexagonal honeycomb core. Composite Structures 175:111–22. doi:10.1016/j.compstruct.2017.05.010.
  • Lakes, R. 1987. Foam structures with a negative Poisson's ratio. Science (New York, NY) 235 (4792):1038–40. doi:10.1126/science.235.4792.1038.
  • Lan, L., J. Sun, F. Hong, D. Wang, Y. Zhang, and M. Fu. 2020. Nonlinear constitutive relations of thin-walled honeycomb structure. Mechanics of Materials 149:103556. doi:10.1016/j.mechmat.2020.103556.
  • Liu, W. D., H. L. Li, Z. D. Yang, J. Zhang, and C. B. Xiong. 2019. Mechanics of a novel cellular structure for morphing applications. Aerospace Science and Technology 95:105479. doi:10.1016/j.ast.2019.105479.
  • Liu, W., H. Li, J. Zhang, and Y. Bai. 2019. In-plane mechanics of a novel cellular structure for multiple morphing applications. Composite Structures 207:598–611. doi:10.1016/j.compstruct.2018.08.096.
  • Liu, W. D., H. Zhu, S. Q. Zhou, Y. L. Bai, Y. Wang, and C. S. Zhao. 2013. In-plane corrugated cosine honeycomb for 1D morphing skin and its application on variable camber wing. Chinese Journal of Aeronautics 26 (4):935–42. doi:10.1016/j.cja.2013.04.015.
  • Masters, I., and K. Evans. 1996. Models for the elastic deformation of honeycombs. Composite Structures 35 (4):403–22. doi:10.1016/S0263-8223(96)00054-2.
  • Megson, T. H. G. 2014. Structural and stress analysis. 2nd ed. England: Butterworth-Heinemann.
  • Olympio, K. R., and F. Gandhi. 2010. Zero Poisson’s ratio cellular honeycombs for flex skins undergoing one-dimensional morphing. Journal of Intelligent Material Systems and Structures 21 (17):1737–53. doi:10.1177/1045389X09355664.
  • Özgen, S., Y. Yaman, M. Şahin, L. Unlusoy, E. Sakarya, T. Insuyu, G. Bayram, and A. Yilmaz. 2010. Morphing air vehicle concepts. Proceedings of the International Workshop on Unmanned Vehicles-UVW2010: 46–51.
  • Qiu, K., Z. Wang, and W. Zhang. 2016. The effective elastic properties of flexible hexagonal honeycomb cores with consideration for geometric nonlinearity. Aerospace Science and Technology 58:258–66. doi:10.1016/j.ast.2016.08.026.
  • Scott, M. H., and G. L. Fenves. 2006. Plastic hinge integration methods for force-based beam–column elements. Journal of Structural Engineering 132 (2):244–52. doi:10.1061/(ASCE)0733-9445(2006)132:2(244).
  • Thill, C., J. A. Etches, I. P. Bond, K. D. Potter, and P. W. Weaver. 2010. Composite corrugated structures for morphing wing skin applications. Smart Materials and Structures 19 (12):124009. doi:10.1088/0964-1726/19/12/124009.
  • Wan, H., H. Ohtaki, S. Kotosaka, and G. Hu. 2004. A study of negative Poisson’s ratio in auxetic honeycombs based on a large deflection model. European Journal of Mechanics - A/Solids 23 (1):95–106. doi:10.1016/j.euromechsol.2003.10.006.
  • Wu, Y., H. Liu, M. Yang, Z. Hu, and Y. Yue. 2020. Computer simulation for high-order stability analysis of a multi-layer disk with honeycomb core under residual stress. Mechanics Based on Design of Structures and Machines doi:10.1080/15397734.2020.1867573.
  • Zhao, Y., M. Ge, and W. Ma. 2020. The effective in-plane elastic properties of hexagonal honeycombs with consideration for geometric nonlinearity. Composite Structures 234:111749. doi:10.1016/j.compstruct.2019.111749.
  • Zhu, H. X. 2007. Large deformation pure bending of an elastic plastic power-law-hardening wide plate: Analysis and application. International Journal of Mechanical Sciences 49 (4):500–14. doi:10.1016/j.ijmecsci.2006.09.002.
  • Zhu, H. X., and N. J. Mills. 2000. The in-plane non-linear compression of regular honeycombs. International Journal of Solids and Structures 37 (13):1931–49. doi:10.1016/S0020-7683(98)00324-2.
  • Zhu, Y., Q. Qin, and J. Zhang. 2021. On effective mechanical properties of an orthogonal corrugated sandwich structure. Materials & Design 201:109491. doi:10.1016/j.matdes.2021.109491.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.