519
Views
10
CrossRef citations to date
0
Altmetric
Articles

Thermal vibration analysis of functionally graded porous plates with variable thickness resting on elastic foundations using finite element method

ORCID Icon
Pages 6583-6611 | Received 24 Sep 2021, Accepted 24 Feb 2022, Published online: 12 Mar 2022

References

  • Aliaga, J. W., and J. N. Reddy. 2004. Nonlinear thermoelastic analysis of functionally graded plates using the third-order shear deformation theory. International Journal of Computational Engineering Science 05 (04):753–79. doi:10.1142/S1465876304002666.
  • Bansal, G., A. Gupta, and V. Katiyar. 2020. Vibration of porous functionally graded plates with geometric discontinuities and partial supports. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234 (21):4149–70. doi:10.1177/0954406220920660.
  • Barati, M. R., and A. M. Zenkour. 2016. Electro-thermoelastic vibration of plates made of porous functionally graded piezoelectric materials under various boundary conditions. Journal of Vibration and Control. 24 (10):1910–26. doi:10.1177/1077546316672788.
  • Dastjerdi, S., M. Malikan, R. Dimitri, and F. Tornabene. 2021. Nonlocal elasticity analysis of moderately thick porous functionally graded plates in a hygro-thermal environment. Composite Structures. 255:112925. doi:10.1016/j.compstruct.2020.112925.
  • Demirhan, P. A., and V. Taskin. 2019. Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach. Composites Part B: Engineering 160:661–76. doi:10.1016/j.compositesb.2018.12.020.
  • Dinh Duc, N., V. D. Quang, P. D. Nguyen, and T. M. Chien. 2018. Nonlinear dynamic response of functionally graded porous plates on elastic foundation subjected to thermal and mechanical loads. Journal of Applied and Computational Mechanics 4 (4):245–59. doi:10.22055/jacm.2018.23219.1151.
  • Dung, N. T., P. Van Minh, H. M. Hung, and D. M. Tien. 2021. The third-order shear deformation theory for modeling the static bending and dynamic responses of piezoelectric bidirectional functionally graded plates. Advances in Materials Science and Engineering. 2021:1–15. doi:10.15/2021/5520240.
  • Ferreira, A. J. M., R. C. Batra, C. M. C. Roque, L. F. Qian, and P. A. L. S. Martins. 2005. Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method. Composite Structures. 69 (4):449–57. doi:10.1016/j.compstruct.2004.08.003.
  • Gao, X. W., C. Zhang, J. Sladek, and V. Sladek. 2008. Fracture analysis of functionally graded materials by a BEM. Composites Science and Technology. 68 (5):1209–15. doi:10.1016/j.compscitech.2007.08.029.
  • Gupta, A., and M. Talha. 2015. Recent development in modeling and analysis of functionally graded materials and structures. Progress in Aerospace Sciences. 79:1–14. doi:10.1016/j.paerosci.2015.07.001.
  • Gupta, A., and M. Talha. 2018. Influence of porosity on the flexural and free vibration responses of functionally graded plates in thermal environment. International Journal of Structural Stability and Dynamics 18 (1):1850013. doi:10.1142/S021945541850013X.
  • Huang, X. L., and H. S. Shen. 2004. Nonlinear vibration and dynamic response of functionally graded plates in thermal environments. International Journal of Solids and Structures. 41 (9/10):2403–27. doi:10.1016/j.ijsolstr.2003.11.012.
  • Hung, D. X., T. M. Tu, N. Van Long, and P. H. Anh. 2020. Nonlinear buckling and postbuckling of FG porous variable thickness toroidal shell segments surrounded by elastic foundation subjected to compressive loads. Aerospace Science and Technology. 107:106253. doi:10.1016/j.ast.2020.106253.
  • Javaheri, R., and M. R. Eslami. 2002. Thermal buckling of functionally graded plates based on higher order theory. Journal of Thermal Stresses 25 (7):603–25. doi:10.1080/01495730290074333.
  • Karamanli, A., M. Aydogdu, and T. P. Vo. 2021. A comprehensive study on the size-dependent analysis of strain gradient multi-directional functionally graded microplates via finite element model. Aerospace Science and Technology 111:106550. doi:10.1016/j.ast.2021.106550.
  • Karami, B., D. Shahsavari, M. Janghorban, and L. Li. 2019. On the resonance of functionally graded nanoplates using bi-Helmholtz nonlocal strain gradient theory. International Journal of Engineering Science. 144:103143. doi:10.1016/j.ijengsci.2019.103143.
  • Katiyar, V., and A. Gupta. 2021. Vibration response of a geometrically discontinuous bi-directional functionally graded plate resting on elastic foundations in thermal environment with initial imperfections. Mechanics Based Design of Structures and Machines. 1–29. doi:10.1080/15397734.2021.1929313.
  • Ke, L. L., and Y. S. Wang. 2007. Two-dimensional sliding frictional contact of functionally graded materials. European Journal of Mechanics - A/Solids 26 (1):171–88. doi:10.1016/j.euromechsol.2006.05.007.
  • Koizumi, M., 1997. Preface. I. Shiota and Y. B. T.-F. G. M. 1996 Miyamoto, Eds. Amsterdam: Elsevier Science B.V.
  • Kumar, V., S. J. Singh, V. H. Saran, and S. P. Harsha. 2021. Vibration characteristics of porous FGM plate with variable thickness resting on Pasternak’s Foundation. European Journal of Mechanics - A/Solids 85:104124. doi:10.1016/j.euromechsol.2020.104124.
  • Li, L.,. X. Li, and Y. Hu. 2018. Nonlinear bending of a two-dimensionally functionally graded beam. Composite Structures. 184:1049–61. doi:10.1016/j.compstruct.2017.10.087.
  • Li, Q., D. Wu, X. Chen, L. Liu, Y. Yu, and W. Gao. 2018. Nonlinear vibration and dynamic buckling analyses of sandwich functionally graded porous plate with graphene platelet reinforcement resting on Winkler–Pasternak elastic foundation. International Journal of Mechanical Sciences. 148:596–610. doi:10.1016/j.ijmecsci.2018.09.020.
  • Liew, K. M., X. Q. He, T. Y. Ng, and S. Sivashanker. 2001. Active control of FGM plates subjected to a temperature gradient: Modelling via finite element method based on FSDT. International Journal for Numerical Methods in Engineering 52 (11):1253–71. doi:10.1002/nme.252.
  • Liu, Y., S. Su, H. Huang, and Y. Liang. 2019. Thermal-mechanical coupling buckling analysis of porous functionally graded sandwich beams based on physical neutral plane. Composites Part B: Engineering 168:236–42. doi:10.1016/j.compositesb.2018.12.063.
  • Manna, M. C. 2012. Free vibration of tapered isotropic rectangular plates. Journal of Vibration and Control. 18 (1):76–91. doi:10.1177/1077546310396800.
  • Nam, V. H., N.-T. Trung, and L. K. Hoa. 2019. Buckling and postbuckling of porous cylindrical shells with functionally graded composite coating under torsion in thermal environment. Thin-Walled Structures 144:106253. doi:10.1016/j.tws.2019.106253.
  • Pham, Q.-H., V. K. Tran, T. T. Tran, T. Nguyen-Thoi, P.-C. Nguyen, and V. D. Pham. 2021. A nonlocal quasi-3D theory for thermal free vibration analysis of functionally graded material nanoplates resting on elastic foundation. Case Studies in Thermal Engineering. 26:101170. doi:10.1016/j.csite.2021.101170.
  • Reddy, J. N. 2003. Mechanics of laminated composite plates and shells: theory and analysis. 2nd ed. Boca Raton, FL: CRC Press,
  • Saleh, B., J. Jiang, R. Fathi, T. Al-Hababi, Q. Xu, L. Wang, D. Song, and A. Ma. 2020. 30 Years of functionally graded materials: An overview of manufacturing methods, applications and future challenges. Composites Part B: Engineering 201:108376. doi:10.1016/j.compositesb.2020.108376.
  • Shahsavari, D., B. Karami, H. R. Fahham, and L. Li. 2018. On the shear buckling of porous nanoplates using a new size-dependent quasi-3D shear deformation theory. Acta Mechanica 229 (11):4549–73. doi:10.1007/s00707-018-2247-7.
  • Shahverdi, H., and M. R. Barati. 2017. Vibration analysis of porous functionally graded nanoplates. International Journal of Engineering Science. 120:82–99. doi:10.1016/j.ijengsci.2017.06.008.
  • Shiota, I. and Y. B. T.-F. G. M. 1997. 1996 Miyamoto, Eds., Copyright. Amsterdam: Elsevier Science B.V.
  • Shufrin, I., and M. Eisenberger. 2006. Vibration of shear deformable plates with variable thickness — first-order and higher-order analyses. Journal of Sound Vibrations. 290 (1/2):465–89. doi:10.1016/j.jsv.2005.04.003.
  • Şimşek, M. 2015. Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions. Composite Structures. 133:968–78. doi:10.1016/j.compstruct.2015.08.021.
  • Sobhy, M. 2015. A comprehensive study on FGM nanoplates embedded in an elastic medium. Composite Structures. 134:966–80. doi:10.1016/j.compstruct.2015.08.102.
  • Tahir, S. I., A. Chikh, A. Tounsi, M. A. Al-Osta, S. U. Al-Dulaijan, and M. M. Al-Zahrani. 2021. Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment. Composite Structures. 269:114030. doi:10.1016/j.compstruct.2021.114030.
  • Thai, H. T., and D. H. Choi. 2012. A refined shear deformation theory for free vibration of functionally graded plates on elastic foundation. Composites Part B: Engineering 43 (5):2335–47. doi:10.1016/j.compositesb.2011.11.062.
  • Tornabene, F. 2009. Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution. Computer Methods in Applied Mechanics and Engineering. 198 (37–40):2911–35. doi:10.1016/j.cma.2009.04.011.
  • Tornabene, F., M. Viscoti, R. Dimitri, and J. N. Reddy. 2021. Higher order theories for the vibration study of doubly-curved anisotropic shells with a variable thickness and isogeometric mapped geometry. Composite Structures. 267:113829. doi:10.1016/j.compstruct.2021.113829.
  • Valizadeh, N., S. Natarajan, O. A. Gonzalez-Estrada, T. Rabczuk, T. Q. Bui, and S. P. A. Bordas. 2013. {NURBS}-based finite element analysis of functionally graded plates: {Static} bending, vibration, buckling and flutter. Composite Structures 99:309–26. doi:10.1016/j.compstruct.2012.11.008.
  • Vel, S., and R. C. Batra. 2002. Exact solution for thermoelastic deformations of functionally graded thick rectangular plates. Journals: The American Institute of Aeronautics and Astronautics - Aiaa. 40 (7):1421–33. doi:10.2514/3.15212.
  • Vinyas, M. 2020. On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT. Composite Structures. 240:112044. doi:10.1016/j.compstruct.2020.112044.
  • Wang, Y. Q., and J. W. Zu. 2017. Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment. Aerospace Science and Technology. 69:550–62. doi:10.1016/j.ast.2017.07.023.
  • Zhou, K., Z. Lin, X. Huang, and H. Hua. 2019. Vibration and sound radiation analysis of temperature-dependent porous functionally graded material plates with general boundary conditions. Applied Acoustics. 154:236–50. doi:10.1016/j.apacoust.2019.05.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.