311
Views
2
CrossRef citations to date
0
Altmetric
Articles

Research on nonlinear dynamic performance of the central bevel gear transmission system in aero-engine with complex excitation

, , &
Pages 6680-6703 | Received 22 Jun 2021, Accepted 13 Mar 2022, Published online: 09 Jun 2022

References

  • Bai, C. Q., and Q. Y. Xu. 2006. Dynamic model of ball bearings with internal clearance and waviness. Journal of Sound and Vibration 294 (1–2):23–48. doi:10.1016/j.jsv.2005.10.005.
  • Bai, C. Q., Q. Y. Xu, and X. L. Zhang. 2006. Nonlinear stability of balanced rotor due to effect of ball bearing internal clearance. Applied Mathematics and Mechanics 27 (2):175–86. doi:10.1007/s10483-006-0205-1.
  • Cao, H., L. Niu, S. Xi, and X. Chen. 2018. Mechanical model development of rolling bearing-rotor systems: A review. Mechanical Systems and Signal Processing 102 (MAR.1):37–58. doi:10.1016/j.ymssp.2017.09.023.
  • Cheng, Y., M. F. Liao, and Y. K. Wang. 2014. Dynamic characteristics of transmission system of aeroengines. Science Technology and Engineering 14 (14):98–106. doi:10.3969/j.issn.1671-1815.2014.14.019.
  • Cheng, Y., and T. C. Lim. 2001. Vibration analysis of hypoid transmissions applying an exact geometry-based gear mesh theory. Journal of Sound and Vibration 240 (3):519–43. doi:10.1006/jsvi.2000.3247.
  • Cheng, Y., and T. C. Lim. 2003. Dynamics of hypoid gear transmission with nonlinear time-varying mesh characteristics. Journal of Mechanical Design 125 (2):373–82. doi:10.1115/1.1564064.
  • Chen, X. Q., Y. H. Ma, Y. F. Wang, and J. Hong. 2020. Failure analysis on central drive bevel gear of turbo-shaft Engine with complex excitation. Journal of Aerospace Power 35 (6):1222–7. doi:10.13224/j.cnki.jasp.2020.06.012.
  • Chen, S., J. Tang, C. Luo, and Q. Wang. 2011. Nonlinear dynamic characteristics of geared rotor bearing systems with dynamic backlash and friction. Mechanism and Machine Theory 46 (4):466–78. doi:10.1016/j.mechmachtheory.2010.11.016.
  • Chen, H. T., X. L. Wu, D. T. Qin, and J. Yang. 2013. Dynamic characteristics of gear transmission system subjected to random internal and external excitation. China Mechanical Engineering 24 (4):533–7. doi:10.3969/j.issn.1004-132X.2013.04.019.
  • Chowdhur, Y. S, and R. K. Yedavalli. 2018. Vibration of high speed helical geared shaft systems mounted on rigid bearings. International Journal of Mechanical Sciences 142 (7):176–90. doi:10.1016/j.ijmecsci.2018.04.033.
  • Du, J. J., Z. B. Liang, and G. Zang. 2017. Influence of support on dynamic performance of radial driving shaft for aero engine. Journal of Harbin Institute of Technology 49 (1):139–43. doi:10.11918/j.issn.0367-6234.2017.01.020.
  • Hou, L., Y. Chen, Q. Cao, and Z. Zhang. 2015. Turning maneuver caused response in an aircraft rotor-ball bearing system. Nonlinear Dynamics 79 (1):229–40. doi:10.1007/s11071-014-1659-8.
  • Huan, L. R., Z. M. Xiao, F. Chen, H. Zhang, and L. R. Wu. 2018. Dynamic characteristics of faulted semi-direct drive wind power gear system with variable load excitation. Journal of Machine Design 35 (2):16–22.
  • Huang, G. H., X. Y. Wang, G. M. Mei, W. H. Zhang, and S. L. Liang. 2015. Dynamic response analysis of gearbox housing system subjected to internal and external excitation in high-speed train. Journal of Mechanical Engineering 51 (12):95–100. doi:10.3901/JME.2015.12.095.
  • Jiang, L. L., D. X. Yin, X. J. Li, and H. Y. Feng. 2018. Analysis of meshing force of helicopter tail drive system during relative position changes of shafting. Journal of Vibration, Measurement and Diagnosis 38 (5):154–60, +209-10. doi:10.16450/j.cnki.issn.1004-6801.2018.05.024.
  • Kim, W., H. Y. Hong, and J. Chung. 2010. Dynamic analysis for a pair of spur gears with translational motion due to bearing deformation. Journal of Sound and Vibration 329 (21):4409–21. doi:10.1016/j.jsv.2010.04.026.
  • Ma, H. T., and D. L. Xue. 2013. Bifurcation and chaos of planetary reverse system to external excitation. China Mechanical Engineering 24 (23):3129–33, 39. doi:10.3969/j.issn.1004-132X.2013.23.002.
  • Qiu, X. H., Q. K. Han, and F. L. Chu. 2014. Analytical investigation on unstable vibrations of single-mesh gear systems with velocity-modulated time-varying stiffness. Journal of Sound and Vibration 333 (20):5130–40. doi:10.1016/j.jsv.2014.05.041.
  • Ren, H. G., and B. Wu. 2012. Analysis for natural vibration characteristics of spiral bevel gears. Machinery Design and Manufacture 2012 (02):51–3. doi:10.19356/j.cnki.1001-3997.2012.02.020.
  • Sharma, A., N. Upadhyay, P. K. Kankar, and M. Amarnath. 2018. Nonlinear dynamic investigations on rolling element bearings: A review. Advances in Mechanical Engineering 10 (3):1–15. doi:10.1177/1687814018764148.
  • Sika, G., and P. Velex. 2008. Instability analysis in oscillators with velocity-modulated time-varying stiffness-Applications to gears submitted to engine speed fluctuations. Journal of Sound and Vibration 318 (1–2):166–75. doi:10.1016/j.jsv.2008.04.008.
  • Song, Z. H., G. Chen, and J. W. Zhang. 1993. Analysis of Typical Failures in Aero Engine. Beijing: Beijing University of Aeronautics and Astronautics Press.
  • Sun, C., Y. Chen, and L. Hou. 2016. Steady-state response characteristics of a dual-rotor system induced by rub-impact. Nonlinear Dynamics 86 (1):1–15. doi:10.1007/s11071-016-2874-2.
  • Tang, J. Y., Z. H. Hu, L. J. Wu, and S. Y. Chen. 2013. Effect of static transmission error on dynamic responses of spiral bevel gears. Journal of Central South University 20 (3):640–7. doi:10.1007/s11771-013-1530-y.
  • Tang, Y. C., Z. Y. Wang, D. H. Yu, and N. C. Ma. 2002. Analysis and control for the faults of aeroengine rotative velocity swing. Aviation Maintenance and Engineering 4 (9):23–4. doi:10.3969/j.issn.1672-0989.2002.04.009.
  • Wan, L., W. X. Luo, and J. L. Xu. 2016. Influence of bearing stiffness on the nonlinear dynamics of a shaft-final drive system. Shock and Vibration 2016 (6):1–14. doi:10.1155/2016/3524609.
  • Wang, F., Z. D. Fang, and S. J. Li. 2013. Dynamic characteristics of a double helical gear under multi-load. Journal of Vibration and Shock 32 (01):49–52, +77. doi:10.3969/j.issn.1000-3835.2013.01.011.
  • Wang, L. H., Y. Y. Huang, R. F. Li, and T. J. Lin. 2007a. Study on nonlinear vibration characteristics of spiral bevel transmission system. China Mechanical Engineering 18 (3):260–4. doi:10.3321/j.issn:1004-132X.2007.03.003.
  • Wang, J., T. C. Lim, and M. Li. 2007b. Dynamics of a hypoid gear pair considering the effects of time-varying mesh parameters and backlash nonlinearity. Journal of Sound and Vibration 308 (1–2):302–29. doi:10.1016/j.jsv.2007.07.042.
  • Wang, S. M., Y. W. Shen, and H. J. Dong. 2003. Nonlinear dynamical characteristics of a spiral bevel gear system with backlash and time-varying stiffness. Chinese Journal of Mechanical Engineering 39 (02):28–32. doi:10.3321/j.issn:0577-6686.2003.02.006.
  • Wang, J. Y., H. T. Wang, and L. X. Guo. 2014. Chaotic vibration analysis of gear transmission system with stochastic disturbance. Journal of Vibration, Measurement and Diagnosis 34 (6):1099–104,1172. doi:10.16450/j.cnki.issn.1004-6801.2014.06.014.
  • Wang, X. S., S. J. Wu, X. H. Zhou, and Q. L. Li. 2008. Bifurcation and chaos in a nonlinear dynamic model of spur gear with backlash. Journal of Vibration and Shock 27 (1):53–6. doi:10.3969/j.issn.1000-3835.2008.01.012.
  • Wu, F., R. Pan, Y. Huang, X. L. Lei, and L. L. Lu. 2019. Investigation on the dynamic characteristics and malfunction diagnosing of radial driving shaft with large length-diameter ratio. Gas Turbine Experiment and Research 32 (1):20–25, 37. doi:10.3969/j.issn.1672-2620.2019.01.004.
  • Wu, J. S., and I. H. Yang. 1995. Computer method for torsion-and-flexure-coupled forced vibration of shafting system with damping. Journal of Sound and Vibration 180 (3):417–35. doi:10.1006/jsvi.1995.0088.
  • Xu, J. L., F. C. Zeng, and X. G. Su. 2017. Coupled bending-torsional nonlinear vibration and bifurcation characteristics of spiral bevel gear system. Shock and Vibration 2017 (2):1–14. doi:10.1155/2017/6835301.
  • Yang, J., and T. C. Lim. 2015. Influence of propeller shaft bending vibration on drivetrain gear dynamics. International Journal of Automotive Technology 16 (1):57–65. doi:10.1007/s12239-015-0006-5.
  • Yang, J., T. Peng, and T. C. Lim. 2012. An enhanced multi-term harmonic balance solution for nonlinear period-one dynamic motions in right-angle gear pairs. Nonlinear Dynamics 67 (2):1053–65. doi:10.1007/s11071-011-0048-9.
  • Yassine, D., H. Ahmed, W. Lassaad, and H. Mohamed. 2014. Effects of gear mesh fluctuation and defaults on the dynamic behavior of two-stage straight bevel system. Mechanism and Machine Theory 82 (24):71–86. doi:10.1016/j.mechmachtheory.2014.07.013.
  • Yavuz, S. D., Z. B. Saribay, and E. Cigeroglu. 2018. Nonlinear time-varying dynamic analysis of a spiral bevel geared system. Nonlinear Dynamics 92 (4):1901–19. doi:10.1007/s11071-018-4170-9.
  • Yavuz, S. D., Z. B. Saribay, and E. Cigeroglu. 2020. Nonlinear dynamic analysis of a drivetrain composed of spur, helical and spiral bevel gears. Nonlinear Dynamics 100 (4):3145–70. doi:10.1007/s11071-020-05666-8.
  • Yuan, Y. B., Z. Liu, T. He, Y. H. Chen, Y. B. Guo, and D. H. Wang. 2019. Influence on dynamic response and modulation sidebands of gear transmission under fluctuating external torque. Journal of Vibration Engineering 32 (03):526–33.
  • Zeng, Q. F., J. Y. Liu, W. Li, Z. G. Li, X. M. Huang, and P. Z. Ren. 2003. Study of the influence of bevel gears engagement on amplitude-frequence characteristic of an engine. Journal of Vibration, Measurement and Diagnosis 23 (3):223–26, 34. doi:10.16450/j.cnki.issn.1004-6801.2003.03.019.
  • Zhai, X. Y., J. J. Yang, X. F. Hu, and H. Zhang. 2019. Influence of speed and load on meshing impact of spiral bevel gear. Journal of Mechanical Transmission 43 (12):22–7. doi:10.16578/j.issn.1004.2539.2019.12.004.
  • Zhang, Y. F. 2003. Research on in flight engine vibration monitoring. Master's thesis, Northwestern Polytechnical University.
  • Zhu, H., W. Chen, R. Zhu, J. Gao, and M. Liao. 2019. Modelling and dynamic analysis of the spiral bevel gear-shaft-bearing-gearbox coupling system. Mathematical Problems in Engineering 2019 (3):1–16. doi:10.1155/2019/9065215.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.