211
Views
2
CrossRef citations to date
0
Altmetric
Articles

Static and dynamic response analysis of corrugated core sandwich plates under patch loading

, &
Pages 6729-6747 | Received 09 Feb 2022, Accepted 28 Mar 2022, Published online: 12 Apr 2022

References

  • Adim, B., H. D. D. Tahar, R. Abderezak, M. A. B. Henni, M. Zidour, and B. Abbes. 2018. Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions. Structural Engineering and Mechanics 66:761–9. doi:10.12989/sem.2018.66.6.761.
  • Arefi, M., S. Firouzeh, E. M. R. Bidgoli, and O. Civalek. 2020. Analysis of porous micro-plates reinforced with FG-GNPs based on Reddy plate theory. Composite Structures 247:112391. doi:10.1016/j.compstruct.2020.112391.
  • Bartolozzi, G., N. Baldanzini, and M. Pierini. 2014. Equivalent properties for corrugated cores of sandwich structures: A general analytical method. Composite Structures 108:736–46. doi:10.1016/j.compstruct.2013.10.012.
  • Benahmed, A., B. Fahsi, A. Benzair, M. Zidour, F. Bourada, and A. Tounsi. 2019. Critical buckling of functionally graded nanoscale beam with porosities using nonlocal higher-order shear deformation. Structural Engineering and Mechanics 69:457–66. doi:10.12989/sem.2019.69.4.457.
  • Boulal, A., T. Bensattalah, A. Karas, M. Zidour, H. Heireche, and A. Bedia. 2020. Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton\'s energy principle. Structural Engineering and Mechanics 73:209–33. doi:10.12989/sem.2020.9.73.209.
  • Bourgeois, S., P. Cartraud, and O. Debordes. 1998. Homogenization of periodic sandwiches. Mechanics of Sandwich Structures Springer 131–8.
  • Buannic, N., P. Cartraud, and T. Quesnel. 2003. Homogenization of corrugated core sandwich panels. Composite Structures 59 (3):299–312. doi:10.1016/S0263-8223(02)00246-5.
  • Carlsson, L. A., T. Nordstrand, and B. Westerlind. 2001. On the elastic stiffnesses of corrugated core sandwich. Journal of Sandwich Structures and Materials 3 (4):253–67. doi:10.1106/BKJF-N2TF-AQ97-H72R.
  • Chang, W.-S., E. Ventsel, T. Krauthammer, and J. John. 2005. Bending behavior of corrugated-core sandwich plates. Composite Structures 70 (1):81–9. doi:10.1016/j.compstruct.2004.08.014.
  • Civalek, O., and M. Avcar. 2020. Free vibration and buckling analyses of CNT reinforced laminated non-rectangular plates by discrete singular convolution method. Engineering with Computers. doi:10.1007/s00366-020-01168-8.
  • Civalek, O., and O. Kiracioglu. 2010. Free vibration analysis of Timoshenko beams by DSC method. International Journal for Numerical Methods in Biomedical Engineering 26 (12):1890–8. doi:10.1002/cnm.1279.
  • Cote, F., V. S. Deshpande, N. A. Fleck, and A. G. Evans. 2006. The compressive and shear responses of corrugated and diamond lattice materials. International Journal of Solids and Structures 43 (20):6220–42. doi:10.1016/j.ijsolstr.2005.07.045.
  • Deng, E. F., L. Zong, and Y. Ding. 2019. Numerical and analytical study on initial stiffness of corrugated steel plate shear walls in modular construction. Steel and Composite Structures 32:347–60. doi:10.12989/scs.2019.32.3.347.
  • Draoui, A., M. Zidour, A. Tounsi, and B. Adim. 2019. Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT). Journal of Nano Research 57:117–35. doi:10.4028/www.scientific.net/JNanoR.57.117.
  • El-Raheb, M. 1997. Frequency response of a two-dimensional truss like periodic panel. The Journal of the Acoustical Society of America 101 (6):3457–65. doi:10.1121/1.418354.
  • Edalati, S. A., Y. Yadollahi, I. Pakar, A. Emadi, and M. Bayat. 2014. Numerical study on the performance of corrugated steel shear walls. Wind and Structures 19 (4):405–20. doi:10.12989/was.2014.19.4.405.
  • Frostig, Y. 2003. Classical and high-order computational models in the analysis of modern sandwich panels. Composites Part B: Engineering 34 (1):83–100. doi:10.1016/S1359-8368(02)00073-2.
  • Fung, T.-C., K. Tan, and T. Lok. 1996. Shear stiffness DQy for C-core sandwich panels. Journal of Structural Engineering 122 (8):958–66. doi:10.1061/(ASCE)0733-9445(1996)122:8(958).
  • Gough, G. S., C. F. Elam, G. H. Tipper, and N. A. D. Bruyne. 1940. The stabilization of a thin sheet by a continuous supporting medium. The Aeronautical Journal 44 (349):12–43. doi:10.1017/S036839310010495X.
  • Guessas, H., M. Zidour, M. Meradjah, and A. Tounsi. 2018. The critical buckling load of reinforced nanocomposite porous plates. Structural Engineering and Mechanics 67:115–23. doi:10.12989/sem.2018.67.2.115.
  • He, L., Y.-S. Cheng, and J. Liu. 2012. Precise bending stress analysis of corrugated-core, honeycomb core and X-core sandwich panels. Composite Structures 94 (5):1656–68. doi:10.1016/j.compstruct.2011.12.033.
  • Kahonen, A. 1988. Zur Einleitung von Einzellasten in I-Trager mit trapezformig profilierten Stegen. Stahlbau – Wiley Online Library 57:250–2.
  • Kapania, R. K., H. E. Soliman, S. Vasudeva, O. Hughes, and D. P. Makhecha. 2008. Static analysis of sandwich panels with square honeycomb core. AIAA Journal 46 (3):627–34. doi:10.2514/1.28121.
  • Kim, S., I. Pack, and J. Kim. 2008. Sound insulation performance of the corrugated and extruded panels for railway vehicles. In Proceedings of International Conference on Sound and Vibration (ICSV15), Daejeon, Korea, 950–7.
  • Kövesdi, B., B. Braun, U. Kuhlmann, L. Dunai, et al. 2008. Enhanced design method for the patch loading resistance of girders with corrugated webs. in Proceeding of the 5th European conference on steel and composite structures, ed by O. Robert, 1155–60. Graz, Austria B: Eurosteel.
  • Lal, A., N. M. Kulkarni, and V. H. Siddaramaiah. 2016. Stochastic hygro-thermo mechanically induced non-linear static analysis of piezoelectric elastically support sandwich plate using secant function-based shear deformation theory (SFSDT). International Journal of Computational Materials Science and Engineering 05 (04):1650020–46. doi:10.1142/S2047684116500202.
  • Liang, C.-C., M.-F. Yang, and P.-W. Wu. 2001. Optimum design of metallic corrugated core sandwich panels subjected to blast loads. Ocean Engineering 28 (7):825–61. doi:10.1016/S0029-8018(00)00034-2.
  • Libove, C., and R. E. Hubka. 1951. Elastic constants for corrugated-core sandwich plates. National Advisory Committee for Aeronautics 2289.
  • Lok, T.-S., and Q.-H. Cheng. 2000. Elastic stiffness properties and behavior of truss-core sandwich panel. Journal of Structural Engineering 126 (5):552–9. doi:10.1061/(ASCE)0733-9445(2000)126:5(552).
  • Mercan, K., C. Demir, and O. Civalek. 2016. Vibration analysis of FG cylindrical shells with power–law index using discrete singular convolution technique. Curved & Layered Structures 3 (1):82–90. doi:10.1515/cls-2016-0007.
  • Mindlin, R. D. 1951. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. Journal of Applied Mechanics 18 (1):31–8. doi:10.1115/1.4010217.
  • Noor, A., S. Burton, and C. Bert. 1996. Computational models for sandwich panels and shells. Applied Mechanics Reviews 49 (3):155–99. doi:10.1115/1.3101923.
  • Nordstrand, T., L. A. Carlsson, and H. G. Allen. 1994. Transverse shear stiffnesses of structural core sandwich. Composite Structures 27 (3):317–29. doi:10.1016/0263-8223(94)90091-4.
  • Pagani, A., M. Petrolo, and E. Carrera. 2019. Dynamic response of laminated and sandwich composite structures via 1D models based on Chebyshev polynomials. Journal of Sandwich Structures & Materials 21 (4):1428–44. doi:10.1177/1099636217715582.
  • Putcha, N. S., and J. N. Reddy. 1986. A refined mixed shear flexible finite element for the nonlinear analysis of laminated plates. Computers & Structures 22 (4):529–38. doi:10.1016/0045-7949(86)90002-7.
  • Rathbun, H. J., Z. Wei, M. Y. He, F. W. Zok, A. G. Evans, D. J. Sypeck, and H. N. G. Wadley. 2004. Measurement and simulation of the performance of a lightweight metallic sandwich structure with a tetrahedral truss core. Journal of Applied Mechanics 71 (3):368–74. doi:10.1115/1.1757487.
  • Romanoff, J., and P. Varsta. 2007. Bending response of web–core sandwich plates. Composite Structures 81 (2):292–302. doi:10.1016/j.compstruct.2006.08.021.
  • Sharma, L. K., G. Bhardwaj, and N. Grover. 2021. Finite element framework for static analysis of temperature dependent IHSDT based functionally graded CNT reinforced plates. Mechanics Based Design of Structures and Machines 1–22. doi:10.1080/15397734.2021.1999265.
  • Si Tayeb, T., M. Zidour, B. Tayeb, H. Heireche, A. Benahmed, and E. A. A. Bedia. 2020. Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle. Advances in Nano Research 8:135–48. doi:10.12989/anr.2020.8.2.135.
  • Valdevit, L., Z. Wei, C. Mercer, F. W. Zok, and A. G. Evans. 2006. Structural performance of near optimal sandwich panels with corrugated cores. International Journal of Solids and Structures 43 (16):4888–905. doi:10.1016/j.ijsolstr.2005.06.073.
  • Wang, H. X., and S. W. Chung. 2011. Equivalent elastic constants of truss core sandwich plates. Journal of Pressure Vessel Technology 133 (4):473–9. doi:10.1115/1.4003473.
  • Williams, D., D. Leggett, and H. G. Hopkins. 1941. Flat sandwich panels under compressive end loads. London: H M Stationery Office.
  • Xue, Z. Y., and J. W. Hutchinson. 2004. Constitutive model for quasi-static deformation of metallic sandwich cores. International Journal for Numerical Methods in Engineering 61 (13):2205–38. doi:10.1002/nme.1142.
  • Youcef, G., H. Ahmed, B. Abdelillah, Z. Mohamed, and B. Tayeb. 2020. Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle. Advances in Nano Research 8:37–47. doi:10.12989/anr.2020.8.1.037.
  • Zamanifar, H., S. Sarrami-Foroushani, and M. Azhari. 2019. Static and dynamic analysis of corrugated core sandwich plates using finite strip method. Engineering Structures 183:30–51. doi:10.1016/j.engstruct.2018.12.102.
  • Zerrouki, R., A. Karas, and M. Zidour. 2020. Critical buckling analyses of nonlinear FG-CNT reinforced nano-composite beam. Advances in Nano Research 9:211–20. doi:10.12989/anr.2020.9.3.211.
  • Zerrouki, R., A. Karas, M. Zidour, A. A. Bousahla, A. Tounsi, F. Bourada, A. Tounsi, K. H. Benrahou, and S. R. Mohmoud. 2021. Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam. Structural Engineering and Mechanics 78:117–24. doi:10.12989/sem.2021.78.2.117.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.