353
Views
3
CrossRef citations to date
0
Altmetric
Articles

Influence of microstructural defects on free flexural vibration of cracked functionally graded plates in thermal medium using XFEM

, ORCID Icon &
Pages 6774-6797 | Received 24 Jan 2022, Accepted 10 Apr 2022, Published online: 21 Apr 2022

References

  • Akgoz, B., and O. Civalek. 2014. Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium. International Journal of Engineering Science 85:90–104. doi:10.1016/j.ijengsci.2014.08.011.
  • Akgoz, B., and O. Civalek. 2015. A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory. Acta Mechanica 226 (7):2277–94. doi:10.1007/s00707-015-1308-4.
  • Al-Rjoub, Y. S., and J. A. Alshatnawi. 2020. Free vibration of functionally-graded porous cracked plates. Structures 28:2392–403. doi:10.1016/j.istruc.2020.10.059.
  • Arshid, E., and A. R. Khorshidvand. 2018. Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method. Thin-Walled Structures 125:220–33. doi:10.1016/j.tws.2018.01.007.
  • Bache, M., R. Tiberkak, and S. Rechak. 2009. Vibration analysis of cracked plates using the extended finite element method. Archive of Applied Mechanics 79 (3):249–62. doi:10.1007/s00419-008-0224-7.
  • Belytschko, T., and T. Black. 1999. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering 45 (5):601–20. doi:10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S.
  • Bever, M. B., and P. F. Duwez. 1972. Gradients in composite materials. Materials Science and Engineering 10:1–8. doi:10.1016/0025-5416(72)90059-6.
  • Chakraverty, S., and K. K. Pradha. 2014. Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions. Aerospace Science and Technology 36:132–56. doi:10.1016/j.ast.2014.04.005.
  • Chen, D., J. Yang, and S. Kitipornchai. 2016. Free and forced vibrations of shear deformable functionally graded porous beams. International Journal of Mechanical Sciences 108–109:14–22. doi:10.1016/j.ijmecsci.2016.01.025.
  • Chidanandamurthya, K. M., W. Wang, C. Fang, and S. Kattimani. 2021. Static, buckling, and free vibration characteristics of porous skew partially functionally graded magneto-electro-elastic plate. Mechanics Based Design of Structures and Machines. doi:10.1080/15397734.2021.2008257.
  • Civalek, O., S. Dastjerdi, and B. Akgoz. 2020. Buckling and free vibrations of CNT-reinforced cross-ply laminated composite plates. Mechanics Based Design of Structures and Machines 1–18. doi:10.1080/15397734.2020.1766494.
  • Dolbow, J., N. Moës, and T. Belytschko. 2000. Modeling fracture in Mindlin–Reissner plates with the extended finite element method. International Journal and Solids Structures 37 (48-50):7161–83. doi:10.1016/S0020-7683(00)00194-3.
  • Duflot, M. 2007. A study of the representation of cracks with level sets. International Journal for Numerical Methods in Engineering 70 (11):1261–302. doi:10.1002/nme.1915.
  • Ebrahimi, F., A. Jafari, and M. R. Barati. 2017. Free vibration analysis of smart porous plates subjected to various physical fields considering neutral surface position. Arabian Journal for Science and Engineering 42 (5):1865–81. doi:10.1007/s13369-016-2348-3.
  • Fang, W., X. Chen, T. Yu, and T. Q. Bui. 2020. Effects of arbitrary holes/voids on crack growth using local mesh refinement adaptive XIGA. Theoretical and Applied Fracture Mechanics 109:102724. doi:10.1016/j.tafmec.2020.102724.
  • Farsani, S. R., R. Talookolaei, P. S. Valvo, and A. M. Goudarzi. 2021. Free vibration analysis of functionally graded porous plates in contact with bounded fluid. Ocean Engineering 219:108285. doi:10.1016/j.oceaneng.2020.108285.
  • Gupta, A., and M. Talha. 2018. Influence of porosity on the flexural and free vibration responses of functionally graded plates in thermal environment. International Journal of Structural Stability and Dynamics 18 (1):1850013. doi:10.1142/S021945541850013X.
  • Huang, X.-L., and H.-S. Shen. 2004. Nonlinear vibration and dynamic response of functionally graded plates in thermal environments. International Journal of Solids and Structures 41 (9-10):2403–27. doi:10.1016/j.ijsolstr.2003.11.012.
  • Jha, D. K., T. Kant, and R. K. Singh. 2013. A critical review of recent research on functionally graded plates. Composite Structures 96:833–49. doi:10.1016/j.compstruct.2012.09.001.
  • Joshi, P. V., A. Gupta, N. K. Jain, R. Salhotra, A. M. Rawani, and G. D. Ramtekkar. 2017. Effect of thermal environment on free vibration and buckling of partially cracked isotropic and FGM microplates based on a non-classical Kirchhoff’s plate theory: An analytical approach. International Journal of Mechanical Sciences 131–132:155–70. doi:10.1016/j.ijmecsci.2017.06.044.
  • Kumar, P., H. Pathak, and A. Singh. 2021. Fatigue crack growth behavior of thermomechanically processed AA 5754: Experiment and extended finite element method simulation. Mechanics of Advanced Materials and Structures 28 (1):88–101. doi:10.1080/15376494.2018.1549294.
  • Li, Q., V. P. Iu, and K. P. Kou. 2009. Three-dimensional vibration analysis of functionally graded material plates in thermal environment. Journal of Sound and Vibration 324 (3–5):733–50. doi:10.1016/j.jsv.2009.02.036.
  • Lynn, P. P., and N. Kumbasar. 1967. Free vibrations of thin rectangular plates having narrow cracks with simply supported edges. Proceedings of Tenth Midwestern Mechanics Conference, Colorado: Developments in Mechanics 4:911–28.
  • Melenk, J. M., and I. Babuska. 1996. The partition of unity finite element method. Basic theory and applications. Computer Methods in Applied Mechanics and Engineering 139 (1–4):289–314. doi:10.1016/S0045-7825(96)01087-0.
  • Mercan, K., C. Demir, and O. Civalek. 2016. Vibration analysis of FG cylindrical shells with power-law index using discrete singular convolution technique. Curved and Layered Structures 3 (1):82–90. doi:10.1515/cls-2016-0007.
  • Minh, P. P., and N. D. Duc. 2021. The effect of cracks and thermal environment on free vibration of FGM plates. Thin-Walled Structures 159:107291. doi:10.1016/j.tws.2020.107291.
  • Moradi, A., and S. A. Nazari. 2016. Computational modeling of strong and weak discontinuities using the extended finite element method. Mechanics of Advanced Materials and Structures 23 (5):578–85. doi:10.1080/15376494.2015.1029153.
  • Nasirmanesh, A., and S. Mohammadi. 2017. An extended finite element framework for vibration analysis of cracked FGM shells. Composite Structures 180:298–315. doi:10.1016/j.compstruct.2017.08.019.
  • Natarajan, S., P. M. Baiz, S. Bordas, T. Rabczuk, and P. Kerfriden. 2011. Natural frequencies of cracked functionally graded material plates by the extended finite element method. Composite Structures 93 (11):3082–92. doi:10.1016/j.compstruct.2011.04.007.
  • Natarajan, S., P. M. Baiz, M. Ganapathi, P. Kerfriden, and S. Bordas. 2011. Linear free flexural vibration of cracked functionally graded plates in thermal environment. Computers and Structures 89 (15-16):1535–46. doi:10.1016/j.compstruc.2011.04.002.
  • Numanoğlu, H. M., H. Ersoy, B. Akgöz, and Ö. Civalek. 2022. A new eigenvalue problem solver for thermo‐mechanical vibration of Timoshenko nanobeams by an innovative nonlocal finite element method. Mathematical Methods in the Applied Sciences 45 (5):2592–23. doi:10.1002/mma.7942.
  • Pandey, S., and S. Pradyumna. 2015. Free vibration of functionally graded sandwich plates in thermal environment using a layerwise theory. European Journal of Mechanics A/Solids 51:55–66. doi:10.1016/j.euromechsol.2014.12.001.
  • Parida, S., and S. C. Mohanty. 2018. Mohanty, free vibration analysis of functionally graded skew plate in thermal environment using higher-order theory. International Journal of Applied Mechanics 10 (1):1850007. doi:10.1142/S1758825118500072.
  • Pathak, H., A. Singh, I. V. Singh, and M. Brahmankar. 2015. Three-dimensional stochastic quasi-static fatigue crack growth simulations using coupled FE-EFG approach. Computers and Structures 160:1–19. doi:10.1016/j.compstruc.2015.08.002.
  • Raza, A., H. Pathak, and M. Talha. 2019. Vibration characteristics of cracked functionally graded structures using XFEM. Journal of Physics: Conference Series 1240 (1):012028. doi:10.1088/1742-6596/1240/1/012028.
  • Raza, A., H. Pathak, and M. Talha. 2021. Influence of material uncertainty on vibration characteristics of higher-order cracked functionally gradient plates using XFEM. International Journal of Applied Mechanics 13 (05):2150062. doi:10.1142/S1758825121500629.
  • Raza, A., H. Pathak, and M. Talha. 2021. Stochastic extended finite element implementation for natural frequency of cracked functionally gradient and bi-material structure. International Journal of Structural Stability and Dynamics 21 (03):2150044. doi:10.1142/S0219455421500449.
  • Reddy, J. N. 1984. A simple higher-order theory for laminated composite plates. Journal of Applied Mechanics 51 (4):745–52. doi:10.1115/1.3167719.
  • Reddy, J. N., and C. D. Chin. 1998. Thermomechanical analysis of functionally graded cylinders and plates. Journal of Thermal Stresses 21 (6):593–629. doi:10.1080/01495739808956165.
  • Rezaei, A. S., and A. R. Saidi. 2015. Exact solution for free vibration of thick rectangular plates made of porous materials. Composite Structures 134:1051–60. doi:10.1016/j.compstruct.2015.08.125.
  • Rezaei, A. S., A. R. Saidi, M. Abrishamdari, and M. Mohammadi. 2017. Natural frequencies of functionally graded plates with porosities via a simple four variable plate theory: An analytical approach. Thin-Walled Structures 120:366–77. doi:10.1016/j.tws.2017.08.003.
  • Sharma, L. K., G. Bhardwaj, and N. Grover. 2021. Finite element framework for static analysis of temperature-dependent IHSDT based functionally graded CNT reinforced plates. Mechanics Based Design of Structures and Machines 1–22. doi:10.1080/15397734.2021.1999265.
  • Shen, M., and M. B. Bever. 1972. Gradients in polymeric materials. Journal of Materials Science 7 (7):741–6. doi:10.1007/BF00549902.
  • Shojaee, S., M. Asgharzadeh, and A. Haeri. 2014. Crack analysis in orthotropic media using combination of isogeometric analysis and extended finite element. International Journal of Applied Mechanics 6 (6):1450068. doi:10.1142/S1758825114500689.
  • Singh, S. J., and S. P. Harsha. 2021. Analysis of porosity effect on free vibration and buckling responses for sandwich sigmoid function-based functionally graded material plate resting on Pasternak foundation using Galerkin Vlasov’s method. Journal of Sandwich Structures & Materials 23 (5):1717–60. doi:10.1177/1099636220904340.
  • Singh, S. K., I. V. Singh, B. K. Mishra, G. Bhardwaj, and T. Q. Bui. 2017. A simple, efficient and accurate Bézier extraction based T-spline XIGA for crack simulations. Theoretical and Applied Fracture Mechanics 88:74–96. doi:10.1016/j.tafmec.2016.12.002.
  • Talha, M., and B. N. Singh. 2011. Thermo-mechanical induced vibration characteristics of the finite element method of shear deformable functionally graded ceramic-metal plates. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 225 (1):50–65. doi:10.1243/09544062JMES2115.
  • Tran, L. V., H. A. Ly, J. Lee, M. A. Wahab, and H. Nguyen-Xuan. 2015. Vibration analysis of cracked FGM plates using higher-order shear deformation theory and extended isogeometric approach. International Journal of Mechanical Sciences 96-97:65–78. doi:10.1016/j.ijmecsci.2015.03.003.
  • Tran, T. T., Q. H. Pham, and T. Nguyen-Thoi. 2021. Static and free vibration analyses of functionally graded porous variable-thickness plates using an edge-based smoothed finite element method. Defence Technology 17 (3):971–86. doi:10.1016/j.dt.2020.06.001.
  • Vo-Duy, T., V. Ho-Huu, and T. Nguyen-Thoi. 2019. Free vibration analysis of laminated FG-CNT reinforced composite beams using finite element method. Frontiers of Structural and Civil Engineering 13 (2):324–36. doi:10.1007/s11709-018-0466-6.
  • Zhang, H., J. Wu, and D. Wang. 2015. Free vibration analysis of cracked thin plates by quasi-convex coupled isogeometric-meshfree method. Frontiers of Structural and Civil Engineering 9 (4):405–19. doi:10.1007/s11709-015-0310-1.
  • Zhao, J., Q. Wang, X. Deng, K. Choe, R. Zhong, and C. Shuai. 2019. Free vibrations of functionally graded porous rectangular plate with uniform elastic boundary conditions. Composites Part B Engineering. 168:106–20. doi:10.1016/j.compositesb.2018.12.044.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.