265
Views
3
CrossRef citations to date
0
Altmetric
Articles

Nonlocal thermoelastic waves inside nanobeam resonator subject to various loadings

, ORCID Icon, ORCID Icon, &
Pages 215-238 | Received 27 Apr 2022, Accepted 13 Jul 2022, Published online: 29 Jul 2022

References

  • Abhik, S., M. Sudip, and M. Kanoria. 2020. Memory response in the vibration of a micro-scale beam due to time-dependent thermal loading. Mechanics Based Design of Structures and Mach doi:10.1080/15397734.2020.1745078.
  • Abouelregal, A. E., and A. M. Zenkour. 2017. Thermoelastic response of nano-beam resonators subjected to exponential decaying time varying load. Journal of Theoretical and Applied Mechanics 55 (3):937–48. doi:10.15632/jtam-pl.55.3.937.
  • Abouelregal, A. E., and A. M. Zenkour. 2019. Thermoviscoelastic response of an axially loaded beam under laser excitation and resting on Winkler's foundation. Multidiscipline Modeling in Materials and Structures 15 (6):1238–54. doi:10.1108/MMMS-11-2018-0200.
  • Abouelregal, A. E. 2011. Generalized thermoelasticity for an isotropic solid sphere in dual-phase-lag of heat transfer with surface heat flux. International Journal for Computational Methods in Engineering Science and Mechanics 12 (2):96–105. doi:10.1080/15502287.2010.548172.
  • Abouelregal, A. E. 2018. Response of thermoelastic microbeams to a periodic external transverse excitation based on MCS theory. Microsystem Technologies 24 (4):1925–33. doi:10.1007/s00542-017-3589-0.
  • Abouelregal, A. E. 2020. Size-dependent thermoelastic initially stressed micro-beam due to a varying temperature in the light of the modified couple stress theory. Applied Mathematics and Mechanics 41 (12):1805–20. doi:10.1007/s10483-020-2676-5.
  • Abouelregal, A. E. 2021. Thermoelastic fractional derivative model for exciting viscoelastic microbeam resting on Winkler foundation. Journal of Vibration and Control 27 (17–18):2123–35. doi:10.1177/1077546320956528.
  • Abouelregal, A. E., and M. Alesemi. 2022. Vibrational analysis of viscous thin beams stressed by laser mechanical load using a heat transfer model with a fractional Atangana-Baleanu operator. Case Studies in Thermal Engineering 34:102028. doi:10.1016/j.csite.2022.102028.
  • Abouelregal, A. E., and S. M. Abo-Dahab. 2012. Dual phase lag model on magneto-thermoelasticity infinite non-homogeneous solid having a spherical cavity. Journal of Thermal Stresses 35 (9):820–41. doi:10.1080/01495739.2012.697838.
  • Aldawody, D. A., M. H. Hendy, and M. A. Ezzat. 2019. On dual-phase-lag magneto-thermo-viscoelasticity theory with memory-dependent derivative. Microsystem Technologies 25 (8):2915–29. doi:10.1007/s00542-018-4194-6.
  • Al-Huniti, N. S., M. A. Al-Nimr, and M. NAJI. 2001. Dynamic response of a rod due to a moving heat source under the hyperbolic heat conduction model. Journal of Sound Vibrations 242 (4):629–40. doi:10.1006/jsvi.2000.3383.
  • Alibeigloo, A. 2017. Three dimensional coupled thermoelasticity solution of sandwich plate with FGM core under thermal shock. Composite Structures 177:96–103. doi:10.1016/j.compstruct.2017.06.046.
  • Alibeigloo, A. 2018. Coupled thermoelasticity analysis of carbon nano tube reinforced composite rectangular plate subjected to thermal shock. Composites Part B: Engineering 153:445–55. doi:10.1016/j.compositesb.2018.09.003.
  • Alibeigloo, A. 2019. Coupled thermoelasticity analysis of FGM plate integrated with piezoelectric layers under thermal shock. Journal of Thermal Stresses 42 (11):1357–75. doi:10.1080/01495739.2019.1640653.
  • Al-jamel, A., M. F. Al-Jamal, and A. El-karamany. 2018. A memory-dependent derivative model for damping in oscillatory systems. Journal of Vibration and Control 24 (11):2221–9. doi:10.1177/1077546316681907.
  • Allameh, S. M. 2003. An introduction to mechanical-properties-related issues in MEMS structures. Journal of Materials Science 38 (20):4115–23. doi:10.1023/A:1026369320215.
  • Chandrasekharalah, D. S. 1986. thermoelasticity with second sound: A rewiew. Applied Mechanics Reviewed 39:355–76.
  • Deng, W., L. Li, Y. Hu, X. Wang, and X. Li. 2018. Thermoelastic damping of graphene nanobeams by considering the size effects of nanostructure and heat conduction. Journal of Thermal Stresses.41 (9):1182–200. doi:10.1080/01495739.2018.1466669.
  • Eom, K., T. Y. Kwon, D. S. Yoon, H. L. Lee, and T. S. Kim. 2007. Dynamical response of nanomechanical resonators to biomolecular interactions. Physical Review B 76 (11):113408. doi:10.1103/PhysRevB.76.113408.
  • Eringen, A. C. 1983. On differential equations of non-local elasticity and solutions of screw dislocation and surface waves. Journal of Applied Physics 54 (9):4703–10. doi:10.1063/1.332803.
  • Eringen, A. C., and D. G. B. Edelen. 1972. On nonlocal elasticity. International Journal of Engineering Science 10 (3):233–48. doi:10.1016/0020-7225(72)90039-0.
  • Eringen, A. C., C. G. Speziale, and B. S. Kim. 1977. Crack tip problem in nonlocal elasticity. Journal of the Mechanics and Physics of Solids 25 (5):339–55. doi:10.1016/0022-5096(77)90002-3.
  • Ezzat, M. A., A. S. El-Karamany, and A. A. El-Bary. 2016. Modeling of memory-dependent derivative in generalized thermoelasticity. The European Physical Journal Plus 131:372. doi:10.1140/epjp/i2016-16372-3.
  • Ezzat, M. A., A. S. El-Karamany, and A. A. El-Bary. 2017. On dual-phase-lag thermoelasticity theory with memory-dependent derivative. Mechanics of Advanced Materials and Structures 24 (11):908–16. doi:10.1080/15376494.2016.1196793.
  • Fang, D. N., Y. X. Sun, and A. K. Soh. 2006. Analysis of frequency spectrum of laser-induced vibration of microbeam resonators. Chinese Physics Letters 23:1554–7.
  • Green, A. E, and P. M. Naghdi. 1992. On undamped heat waves in an elastic solid. Journal of Thermal Stresses 15 (2):253–64. doi:10.1080/01495739208946136.
  • Green, A. E, and P. M. Naghdi. 1993. Thermoelasticity without energy dissipation. Journal of Elasticity 31 (3):189–208. doi:10.1007/BF00044969.
  • Green, A. E., and K. A. Lindsay. 1972. Thermoelasticity. Journal of Elasticity 2 (1):1–7. doi:10.1007/BF00045689.
  • Guo, F. L., J. Song, G. Q. Wang, and Y. F. Zhou. 2014. Analysis of thermoelastic dissipation in circular micro-plate resonators using the generalized thermoelasticity theory of dual-phase-lagging model. Journal of Sound Vibrations 333 (11):2465–74. doi:10.1016/j.jsv.2014.01.003.
  • Hendy, M. H., S. I. El-Attar, and M. A. Ezzat. 2020. On thermoelectric materials with memory-dependent derivative and subjected to a moving heat source. Microsystem Technologies 26:595–608. doi:10.1007/s00542-019-04519-8.
  • Kumar, R., R. Tiwari, and R. Kumar. 2020. Significance of memory-dependent derivative approach for the analysis of thermoelastic damping in micromechanical resonators. Mechanics of Time Dependent Materials 26:101–118. doi:10.1007/s11043-020-09477-7.
  • Li., L., R. Lin, and T. Y. Ng. 2020. A fractional nonlocal time-space viscoelasticity theory and its applications in structural dynamics. Applied Mathematical Modelling 84:116–36. doi:10.1016/j.apm.2020.03.048.
  • Li, L., Y. Hu, and L. Ling. 2016. Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory. Physica E: Low-Dimensional Systems and Nanostructures 75:118–24. doi:10.1016/j.physe.2015.09.028.
  • Lim, C. W. 2009a. Equilibrium and static deflection for bending of a non-local nanobeam. Advances in Vibration Engineering 8 (4):277–300.
  • Lim, C. W. 2009b. A discussion on the physics and truth of nanoscales for vibration of nanobeams based on nonlocal elastic stress field theory. Proceedings of the 7th International Symposium on Vibrations of Continuous Systems, 42–4. Zakopane, Poland, July 19–24.
  • Lim, C. W. 2010. Nanoscale for nanobeams based on the theory of non-local elastic stress field: Equilibrium, governing equation and static deflection. Applied Mathematics and Mechanics (English Edition) 31 (1):1–19.
  • Lim, C. W., C. Li, and J. L. Yu. 2010. Dynamic behaviour of axially moving nanobeams based on nonlocal elasticity approach. Acta Mechanica Sinica 26 (5):755–65. doi:10.1007/s10409-010-0374-z.
  • Lord, H., and Y. Shulman. 1967. A generalized dynamical theory of thermoelasticity. Journal of the Mechanics and Physics of Solids 15 (5):299–309. doi:10.1016/0022-5096(67)90024-5.
  • Lotfy, K. 2016. The elastic wave motions for a photothermal medium of a dual-phase-lag model with an internal heat source and gravitational field. Canadian Journal of Physics 94 (4):400–9. doi:10.1139/cjp-2015-0782.
  • Lu, P., H. P. Lee, C. Lu, and P. Q. Zhang. 2007. Application of non-local beam models for carbon nanotubes. International Journal of Solids and Structures 44 (16):5289–300. doi:10.1016/j.ijsolstr.2006.12.034.
  • Muc, A. 2020. Non-local Approach to free vibrations and buckling problems for cylindrical nano-structures. Composite Structures 250:112541. doi:10.1016/j.compstruct.2020.112541.
  • Peddieson, J., R. Buchanan, and R. P. McNitt. 2003. Application of non-local continuum models to nanotechnology. International Journal of Engineering Science 41 (3–5):305–12. doi:10.1016/S0020-7225(02)00210-0.
  • Sudak, L. J. 2003. Column buckling of multi-walled carbon nanotubes using non-local continuum mechanics. Journal of Applied Physics 94 (11):7281–7. doi:10.1063/1.1625437.
  • Tiwari, R., and J. C. Misra. 2020. Magneto-thermoelastic excitation induced by a thermal shock: A study under the purview of three phase lag theory. Waves in Random and Complex Media 32 (2):797–818. doi:10.1080/17455030.2020.1800861.
  • Tiwari, R., and R. Kumar. 2021. Analysis of plane wave propagation under the purview of three phase lag theory of thermoelasticity with non-local effect. European Journal of Mechanics - A/Solids 88:104235. doi:10.1016/j.euromechsol.2021.104235.
  • Tiwari, R., and S. Mukhopadhyay. 2016. Analysis of wave propagation in the presence of continuous line heat source under heat transfer with memory dependent derivatives. Mathematics & Mechanics of Solids 23 (5):820–34. doi:10.1177/1081286517692020.
  • Tiwari, R., and S. Mukhopadhyay. 2017. On electromagneto-thermoelastic plane waves under Green–Naghdi theory of thermoelasticity-II. Journal of Thermal Stresses 40 (8):1040–62. doi:10.1080/01495739.2017.1307094.
  • Tiwari, R., R. Kumar, and A. E. Abouelregal. 2022. Analysis of a magneto-thermoelastic problem in a piezoelastic medium using the non-local memory dependent heat conduction theory involving three phase lags. Mechanics of Time Dependent Materials 26:271–87. doi:10.1007/s11043-021-09487-z.
  • Tiwari, R., R. Kumar, and A. Kumar. 2020. Investigation of thermal excitation induced by laser pulses and thermal shock in the half space medium with variable thermal conductivity. Waves in Random and Complex Media. doi:10.1080/17455030.2020.1851067.
  • Tzou, D. Y. 1996. Macro-to microscale heat transfer: The Lagging behavior. Washington, DC: Taylor & Francis.
  • Venkatesan, K. R., T. Stoumbos, D. Inoyama, and A. Chattopadhyay. 2021. Computational analysis of failure mechanisms in composite sandwich space structures subject to cyclic thermal loading. Composite Structures 256:113086. doi:10.1016/j.compstruct.2020.113086.
  • Wang, J. L, and H. F. Li. 2011. Surpassing the fractional derivative: Concept of the memory-dependent derivative. Computers & Mathematics with Applications 62 (3):1562–7. doi:10.1016/j.camwa.2011.04.028.
  • Wang, Q, and K. M. Liew. 2007. Application of non-local continuum mechanics to static analysis of micro-and nano-structures. Physics Letters A. 363 (3):236–42. doi:10.1016/j.physleta.2006.10.093.
  • Wang, Y. W, and X. F. Li. 2021. Synergistic effect of memory-size-microstructure on thermoelastic damping of a micro-plate. International Journal of Heat and Mass Transfer 181:122031. doi:10.1016/j.ijheatmasstransfer.2021.122031.
  • Wang, Y. W., X. Y. Zhang, and X. F. Li. 2020. Thermoelastic damping in a micro-beam based on the memory-dependent generalized thermoelasticity. Waves in Random and Complex Media. doi:10.1080/17455030.2020.1865590.
  • Yang, F., A. C. M. Chong, D. C. C. Lam, and P. Tong. 2002. Couple stress based strain gradient theory of elasticity. International Journal of Solids and Structures 39 (10):2731–43. doi:10.1016/S0020-7683(02)00152-X.
  • Younis, M. I. 2011. MEMS linear and non-linear statics and dynamics. New York, USA: Springer.
  • Yu, Y. J., W. Hu, and X. G. Tian. 2014. A novel generalized thermoelasticity model based on memory-dependent derivative. International Journal of Engineering Science 81:123–34. doi:10.1016/j.ijengsci.2014.04.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.