239
Views
5
CrossRef citations to date
0
Altmetric
Articles

Stability analysis of imperfect functionally graded CNTs reinforced curved beams

&
Pages 386-407 | Received 12 Apr 2022, Accepted 16 Aug 2022, Published online: 30 Sep 2022

References

  • Akgöz, B, and Ö. Civalek. 2014. Thermo-mechanical buckling behavior of functionally graded microbeams embedded in an elastic medium. International Journal of Engineering Science 85:90–104. doi:10.1016/j.ijengsci.2014.08.011.
  • Akgöz, B, and Ö. Civalek. 2015. A novel microstructure-dependent shear deformable beam model. International Journal of Mechanical Sciences 99:10–20. doi:10.1016/j.ijmecsci.2015.05.003.
  • Akgöz, B, and Ö. Civalek. 2016. Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory. Acta Astronautica 119:1–12. doi:10.1016/j.actaastro.2015.10.021.
  • Akgöz, B, and Ö. Civalek. 2017. A size-dependent beam model for stability of axially loaded carbon nanotubes surrounded by Pasternak elastic foundation. Composite Structures 176:1028–38. doi:10.1016/j.compstruct.2017.06.039.
  • Arefi, M., S. Firouzeh, E.-M -R. Bidgoli, and Ö. Civalek. 2020. Analysis of porous micro-plates reinforced with FG-GNPs based on Reddy plate theory. Composite Structures 247:112391. doi:10.1016/j.compstruct.2020.112391.
  • Ansari, M., A. Kumar, S. Fic, and D. Barnat-Hunek. 2018. Flexural and free vibration analysis of CNT-reinforced functionally graded plate. Materials 11 (12):2387. doi:10.3390/ma11122387.
  • Ansari, M. I, and A. Kumar. 2019. Bending analysis of functionally graded CNT reinforced doubly curved singly ruled truncated rhombic cone. Mechanics Based Design of Structures and Machines 47 (1):67–86. doi:10.1080/15397734.2018.1519635.
  • Chiba, R, and Y. Sugano. 2012. Optimization of the material composition of functionally graded materials based on multiscale thermoelastic analysis. Acta Mechanica 223 (5):891–909. doi:10.1007/s00707-011-0610-z.
  • Foroutan, K., E. Carrera, and H. Ahmadi. 2021. Nonlinear hygrothermal vibration and buckling analysis of imperfect FG-CNTRC cylindrical panels embedded in viscoelastic foundations. European Journal of Mechanics - A/Solids 85:104107. doi:10.1016/j.euromechsol.2020.104107.
  • Ghabezi, P, and M. Golzar. 2013. Mechanical analysis of trapezoidal corrugated composite skins. Applied Composite Materials 20 (4):341–53. doi:10.1007/s10443-012-9267-6.
  • Ghuku, S, and K. N. Saha. 2019. A parametric study on geometrically nonlinear behavior of curved beams with single and double link rods, and supported on moving boundary. International Journal of Mechanical Sciences 161: 105065
  • Haskul, M. 2020. Elastic state of functionally graded curved beam on the plane stress state subject to thermal load. Mechanics Based Design of Structures and Machines 48 (6):739–54. doi:10.1080/15397734.2019.1660890.
  • He, X-t., X. Li, W-m Li, and J-y Sun. 2019. Bending analysis of functionally graded curved beams with different properties in tension and compression. Archive of Applied Mechanics 89 (9):1973–94. doi:10.1007/s00419-019-01555-8.
  • Hron, R., M. Kadlec, and R. Růžek. 2021. Effect of the test procedure and thermoplastic composite resin type on the curved beam strength. Materials 14 (2):352. doi:10.3390/ma14020352.
  • Huang, S, and P. Qiao. 2021. Nonlinear stability analysis of thin-walled I-section laminated composite curved beams with elastic end restraints. Engineering Structures 226:111336. doi:10.1016/j.engstruct.2020.111336.
  • Ivanov, S. G., D. Beyens, L. Gorbatikh, and S. V. Lomov. 2017. Damage development in woven carbon fibre thermoplastic laminates with PPS and PEEK matrices: A comparative study. Journal of Composite Materials 51 (5):637–47. doi:10.1177/0021998316653460.
  • Jouneghani, F. Z., R. Dimitri, and F. Tornabene. 2018. Structural response of porous FG nanobeams under hygro-thermo-mechanical loadings. Composites Part B: Engineering 152:71–8. doi:10.1016/j.compositesb.2018.06.023.
  • Karami, B., M. Janghorban, D. Shahsavari, R. Dimitri, and F. Tornabene. 2019. Nonlocal buckling analysis of composite curved beams reinforced with functionally graded carbon nanotubes. Molecules 24 (15):2750. doi:10.3390/molecules24152750.
  • Kumar, A., P. Bhargava, and A. Chakrabarti. 2013. Vibration of laminated composite skew hypar shells using higher order theory. Thin-Walled Structures 63:82–90. doi:10.1016/j.tws.2012.09.007.
  • Liu, H., H. Wu, and Z. Lyu. 2020. Nonlinear resonance of FG multilayer beam-type nanocomposites: Effects of graphene nanoplatelet-reinforcement and geometric imperfection. Aerospace Science and Technology 98:105702. doi:10.1016/j.ast.2020.105702.
  • Malikan, M., V. B. Nguyen, and F. Tornabene. 2018. Damped forced vibration analysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory. Engineering Science and Technology, an International Journal 21 (4):778–86. doi:10.1016/j.jestch.2018.06.001.
  • Melaibari, A., R.-M. Abo-bakr, S.-A. Mohamed, and M.-A. Eltaher. 2020. Static stability of higher order functionally graded beam under variable axial load. Alexandria Engineering Journal 59 (3):1661–75. doi:10.1016/j.aej.2020.04.012.
  • Melaibari, A., A.-A. Daikh, M. Basha, A. Wagih, R. Othman, K.-H. Almitani, M.-A. Hamed, A. Abdelrahman, and M.-A. Eltaher. 2022. A dynamic analysis of randomly oriented functionally graded carbon nanotubes/fiber-reinforced composite laminated shells with different geometries. Mathematics 10 (3):408. doi:10.3390/math10030408.
  • Nguyen, T.-T., N.-L. Nguyen, J. Lee, and Q.-H. Nguyen. 2021. Analysis of non-uniform polygonal cross-sections for thin-walled functionally graded straight and curved beams. Engineering Structures 226:111366. doi:10.1016/j.engstruct.2020.111366.
  • Nhu Trang, L. T, and H. Van Tung. 2018. Tangential edge constraint sensitivity of nonlinear stability of CNT-reinforced composite plates under compressive and thermomechanical loadings. Journal of Engineering Mechanics 144 (7):04018056. doi:10.1061/(ASCE)EM.1943-7889.0001479.
  • Piovan, M. T, and R. Sampaio. 2015. Parametric and non-parametric probabilistic approaches in the mechanics of thin-walled composite curved beams. Thin-Walled Structures 90:95–106. doi:10.1016/j.tws.2014.12.018.
  • Sayyad, S. A., and M. Y. Ghugal. 2019. A sinusoidal beam theory for functionally graded sandwich curved beams. Composite Structures 226 (6):111246. doi:10.1016/j.compstruct.2019.111246.
  • Shen, H.-S. 2009. Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Composite Structures 91 (1):9–19. doi:10.1016/j.compstruct.2009.04.026.
  • Talebizadehsardari, P., A. Eyvazian, M. Asmael, B. Karami, D. Shahsavari, and R. B. Mahani. 2020. Static bending analysis of functionally graded polymer composite curved beams reinforced with carbon nanotubes. Thin-Walled Structures 157:107139. doi:10.1016/j.tws.2020.107139.
  • Tornabene, F. 2009. Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution. Computer Methods in Applied Mechanics and Engineering 198 (37-40):2911–35. doi:10.1016/j.cma.2009.04.011.
  • Tornabene, F., M. Bacciocchi, N. Fantuzzi, and J.-N. Reddy. 2019. Multiscale approach for three‐phase CNT/polymer/fiber laminated nanocomposite structures. Polymer Composites 40 (S1):E102–E126. doi:10.1002/pc.24520.
  • Tornabene, F., M. Viscoti, R. Dimitri, and J.-N. Reddy. 2021. Higher order theories for the vibration study of doubly-curved anisotropic shells with a variable thickness and isogeometric mapped geometry. Composite Structures 267:113829. doi:10.1016/j.compstruct.2021.113829.
  • Tornabene, F., M. Viscoti, R. Dimitri, and M.-A. Aiello. 2021. Higher order formulations for doubly-curved shell structures with a honeycomb core. Thin-Walled Structures 164:107789. doi:10.1016/j.tws.2021.107789.
  • Vuong, P.-M, and N.-D. Duc. 2020. Nonlinear static and dynamic stability of functionally graded toroidal shell segments under axial compression. Thin-Walled Structures 155:106973. doi:10.1016/j.tws.2020.106973.
  • Wu, H.-L., J. Yang, and S. Kitipornchai. 2016. Imperfection sensitivity of postbuckling behaviour of functionally graded carbon nanotube-reinforced composite beams. Thin-Walled Structures 108:225–33. doi:10.1016/j.tws.2016.08.024.
  • Wu, T., G. Zhou, D. Cai, F. Zhou, and L. Cai. 2021. Effect of internal heating on delamination properties of deicing composite curved beams under four-point bending. Composite Structures 256:113084. doi:10.1016/j.compstruct.2020.113084.
  • Yamamoto, Y, and T. Takashima. 2002. Friction and wear of water lubricated PEEK and PPS sliding contacts. Wear 253 (7-8):820–6. doi:10.1016/S0043-1648(02)00059-5.
  • Zhang, H., C. Gao, H. Li, F. Pang, T. Zou, H. Wang, and N. Wang. 2020. Analysis of functionally graded carbon nanotube-reinforced composite structures: A review. Nanotechnology Reviews 9 (1):1408–26. doi:10.1515/ntrev-2020-0110.
  • Zhao, S., Z. Zhao, Z. Yang, L. Ke, S. Kitipornchai, and J. Yang. 2020. Functionally graded graphene reinforced composite structures: A review. Engineering Structures 210:110339. doi:10.1016/j.engstruct.2020.110339.
  • Zhong, Y., Y. Bansal, and M.-J. Pindera. 2004. Efficient reformulation of the thermal higher-order theory for FGMs with locally variable conductivity. International Journal of Computational Engineering Science 05 (04):795–831. doi:10.1142/S146587630400268X.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.