291
Views
7
CrossRef citations to date
0
Altmetric
Articles

Comparative study of different porosity models for the nonlinear free vibration analysis of the functionally graded cylindrical panels

, &
Pages 773-799 | Received 06 Mar 2022, Accepted 02 Sep 2022, Published online: 15 Sep 2022

References

  • Amabili, M. 2008. Nonlinear vibrations and stability of shells and plates. Cambridge, UK: Cambridge University Press. doi:10.1017/CBO9780511619694.
  • Amabili, M. 2018. Nonlinear mechanics of shells and plates in composite, soft and biological materials. Cambridge, UK: Cambridge University Press. doi:10.1017/9781316422892.
  • Amabili, M., K. Karagiozis, and M. P. Païdoussis. 2009. Effect of geometric imperfections on non-linear stability of circular cylindrical shells conveying fluid. International Journal of Non-Linear Mechanics 44 (3):276–89. doi:10.1016/j.ijnonlinmec.2008.11.006.
  • Amabili, M., and J. N. Reddy. 2010. A new non-linear higher-order shear deformation theory for large-amplitude vibrations of laminated doubly curved shells. International Journal of Non-Linear Mechanics 45 (4):409–18. doi:10.1016/j.ijnonlinmec.2009.12.013.
  • Amir, M., and M. Talha. 2018. Thermoelastic vibration of shear deformable functionally graded curved beams with microstructural defects. International Journal of Structural Stability and Dynamics 18 (11):1850135. doi:10.1142/S0219455418501353.
  • Amir, M., and M. Talha. 2019. Imperfection sensitivity in the vibration behavior of functionally graded arches by considering microstructural defects. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233 (8):2763–77. doi:10.1177/0954406218792584.
  • Amir, M., and M. Talha. 2019. Nonlinear vibration characteristics of shear deformable functionally graded curved panels with porosity including temperature effects. International Journal of Pressure Vessels and Piping 172:28–41. doi:10.1016/j.ijpvp.2019.03.008.
  • Amir, M., and M. Talha. 2020. Influence of large amplitude vibration on geometrically imperfect sandwich curved panels embedded with gradient metallic cellular core. International Journal of Applied Mechanics 12 (9):2050099. doi:10.1142/S1758825120500994.
  • Ansari, M. I., A. Kumar, D. Barnat-Hunek, Z. Suchorab, and B. Kwiatkowski. 2019. Investigation of porosity effect on flexural analysis of doubly curved FGM conoids. Science and Engineering of Composite Materials 26 (1):435–48. doi:10.1515/secm-2019-0026.
  • Barati, M. R. 2018. Porosity-dependent vibration and dynamic stability of compositionally gradient nanofilms using nonlocal strain gradient theory. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 232 (17):3144–55. doi:10.1177/0954406217729421.
  • Beg, M. S., H. M. Khalid, M. Y. Yasin, and L. Hadji. 2021. Exact third-order static and free vibration analyses of functionally graded porous curved beam. Steel and Composite Structures 39 (1):1–20. doi:10.12989/scs.2021.39.1.001.
  • Di, L. E., and M. T. Piovan. 2018. Parametric probabilistic approach in the dynamics of porous FGM curved beams. Mecánica Computacional 36 (15):673–82.
  • Ebrahimi, F., and M. R. Barati. 2017. Size-dependent vibration analysis of viscoelastic nanocrystalline silicon nanobeams with porosities based on a higher order refined beam theory. Composite Structures 166:256–67. doi:10.1016/j.compstruct.2017.01.036.
  • Ebrahimi, F., F. Ghasemi, and E. Salari. 2016. Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities. Meccanica 51 (1):223–49. doi:10.1007/s11012-015-0208-y.
  • Ebrahimi, F., and A. Jafari. 2016. A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities. Journal of Engineering 2016:1–20. doi:10.1155/2016/9561504.
  • Ebrahimi, F., A. Seyfi, and A. Dabbagh. 2019. A novel porosity-dependent homogenization procedure for wave dispersion in nonlocal strain gradient inhomogeneous nanobeams. European Physical Journal Plus 134 (5):1–11. doi:10.1140/epjp/i2019-12547-8.
  • Foroutan, K., A. Shaterzadeh, and H. Ahmadi. 2020. Nonlinear static and dynamic hygrothermal buckling analysis of imperfect functionally graded porous cylindrical shells. Applied Mathematical Modelling 77:539–53. doi:10.1016/j.apm.2019.07.062.
  • Gao, K., W. Gao, B. Wu, D. Wu, and C. Song. 2018. Nonlinear primary resonance of functionally graded porous cylindrical shells using the method of multiple scales. Thin-Walled Structures 125:281–93. doi:10.1016/j.tws.2017.12.039.
  • Gao, W., Z. Qin, and F. Chu. 2020. Wave propagation in functionally graded porous plates reinforced with graphene platelets. Aerospace Science and Technology 102:105860. doi:10.1016/j.ast.2020.105860.
  • Geleta, T. N., K. Woo, and B. Lee. 2018. Delamination behavior of L-shaped laminated composites. International Journal of Aeronautical and Space Sciences 19 (2):363–74. doi:10.1007/s42405-018-0038-y.
  • Ghadiri, M., and H. Safarpour. 2017. Free vibration analysis of size-dependent functionally graded porous cylindrical microshells in thermal environment. Journal of Thermal Stresses 40 (1):55–71. doi:10.1080/01495739.2016.1229145.
  • Ghassemi, A., M. Hassani, and S. Oveissi. 2018. Comparison of nonlinear von-Karman and Cosserat theories in very large deformation of skew plates. International Journal of Advanced Structural Engineering 10 (1):73–84. doi:10.1007/s40091-018-0184-2.
  • Guo, H., S. Cao, T. Yang, and Y. Chen. 2018. Geometrically nonlinear analysis of laminated composite quadrilateral plates reinforced with graphene nanoplatelets using the element-free IMLS-Ritz method. Composites Part B: Engineering 154:216–24. doi:10.1016/j.compositesb.2018.08.018.
  • Guo, X., Y.-Y. Lee, and C. Mei. 2006. Non-linear random response of laminated composite shallow shells using finite element modal method. International Journal for Numerical Methods in Engineering 67 (10):1467–89. doi:10.1002/nme.1672.
  • Gupta, A., and M. Talha. 2015. Recent development in modeling and analysis of functionally graded materials and structures. Progress in Aerospace Sciences 79:1–14. doi:10.1016/j.paerosci.2015.07.001.
  • Gupta, A., and M. Talha. 2017. Nonlinear flexural and vibration response of geometrically imperfect gradient plates using hyperbolic higher-order shear and normal deformation theory. Composites Part B: Engineering 123:241–61. doi:10.1016/j.compositesb.2017.05.010.
  • Gupta, A., and M. Talha. 2018a. Influence of porosity on the flexural and free vibration responses of functionally graded plates in thermal environment. International Journal of Structural Stability and Dynamics 18 (1):1850013. doi:10.1142/S021945541850013X.
  • Gupta, A., and M. Talha. 2018b. Influence of porosity on the flexural and vibration response of gradient plate using nonpolynomial higher-order shear and normal deformation theory. International Journal of Mechanics and Materials in Design 14 (2):277–96. doi:10.1007/s10999-017-9369-2.
  • Jha, D. K., T. Kant, and R. K. Singh. 2013. A critical review of recent research on functionally graded plates. Composite Structures 96:833–49. doi:10.1016/j.compstruct.2012.09.001.
  • Kar, V. R., and S. K. Panda. 2016. Nonlinear free vibration of functionally graded doubly curved shear deformable panels using finite element method. Journal of Vibration and Control 22 (7):1935–49. doi:10.1177/1077546314545102.
  • Keleshteri, M. M., and J. Jelovica. 2020. Nonlinear vibration behavior of functionally graded porous cylindrical panels. Composite Structures 239:112028. doi:10.1016/j.compstruct.2020.112028.
  • Khorshidvand, A. R., E. F. Joubaneh, M. Jabbari, and M. R. Eslami. 2014. Buckling analysis of a porous circular plate with piezoelectric sensor–actuator layers under uniform radial compression. Acta Mechanica 225 (1):179–93. doi:10.1007/s00707-013-0959-2.
  • Kim, M. G., and S. W. Kim. 2021. Impact localization for composite plate using the modified error-outlier algorithm with Pugh’s concept selection under various temperatures. Composite Structures 272:114226. doi:10.1016/j.compstruct.2021.114226.
  • Kim, S. W., E. H. Kim, M. S. Jeong, and I. Lee. 2015. Damage evaluation and strain monitoring for composite cylinders using tin-coated FBG sensors under low-velocity impacts. Composites Part B: Engineering 74:13–22. doi:10.1016/j.compositesb.2015.01.004.
  • Koizumi, M. 1997. FGM activities in Japan. Composites Part B: Engineering 28 (1–2):1–4. doi:10.1016/S1359-8368(96)00016-9.
  • Kundu, C. K., and P. K. Sinha. 2006. Nonlinear transient analysis of laminated composite shells. Journal of Reinforced Plastics and Composites 25 (11):1129–47. doi:10.1177/0731684406065196.
  • Lee, H. B., Y. N. Kim, I. J. Choi, J. S. Park, and I. G. Kim. 2020. Nonlinear dynamic responses of shear-deformable composite panels under combined supersonic aerodynamic, thermal, and random acoustic loads. International Journal of Aeronautical and Space Sciences 21 (3):707–22. doi:10.1007/s42405-019-00242-w.
  • Li, H., F. Pang, H. Chen, and Y. Du. 2019. Vibration analysis of functionally graded porous cylindrical shell with arbitrary boundary restraints by using a semi analytical method. Composites Part B: Engineering 164:249–64. doi:10.1016/j.compositesb.2018.11.046.
  • Li, H., F. Pang, Y. Ren, X. Miao, and K. Ye. 2019. Free vibration characteristics of functionally graded porous spherical shell with general boundary conditions by using first-order shear deformation theory. Thin-Walled Structures 144:106331. doi:10.1016/j.tws.2019.106331.
  • Li, Z., R. Zhong, Q. Wang, B. Qin, and H. Yu. 2020. The thermal vibration characteristics of the functionally graded porous stepped cylindrical shell by using characteristic orthogonal polynomials. International Journal of Mechanical Sciences 182:105779. doi:10.1016/j.ijmecsci.2020.105779.
  • Liang, C., and Y. Q. Wang. 2020. A quasi-3D trigonometric shear deformation theory for wave propagation analysis of FGM sandwich plates with porosities resting on viscoelastic foundation. Composite Structures 247:112478. doi:10.1016/j.compstruct.2020.112478.
  • Liew, K. M., and C. W. Lim. 1996. A higher-order theory for vibration of doubly curved shallow shells. Journal of Applied Mechanics 63 (3):587–93. doi:10.1115/1.2823338.
  • Lim, J., and S. W. Kim. 2020. Enhanced damping characteristics of carbon fiber reinforced polymer–based shear thickening fluid hybrid composite structures. Journal of Intelligent Material Systems and Structures 31 (20):2291–303. doi:10.1177/1045389X19898769.
  • Liu, Y., Z. Qin, and F. Chu. 2021a. Nonlinear dynamic responses of sandwich functionally graded porous cylindrical shells embedded in elastic media under 1:1 internal resonance. Applied Mathematics and Mechanics 42 (6):805–18. doi:10.1007/s10483-021-2740-7.
  • Liu, Y., Z. Qin, and F. Chu. 2021b. Nonlinear forced vibrations of FGM sandwich cylindrical shells with porosities on an elastic substrate. Nonlinear Dynamics 104 (2):1007–21. doi:10.1007/s11071-021-06358-7.
  • Liu, Y., Z. Qin, and F. Chu. 2021c. Nonlinear forced vibrations of functionally graded piezoelectric cylindrical shells under electric-thermo-mechanical loads. International Journal of Mechanical Sciences 201:106474. doi:10.1016/j.ijmecsci.2021.106474.
  • Liu, Y., Z. Qin, and F. Chu. 2022. Analytical study of the impact response of shear deformable sandwich cylindrical shell with a functionally graded porous core. Mechanics of Advanced Materials and Structures 29 (9):1338–47. doi:10.1080/15376494.2020.1818904.
  • Madjidi, S., W. S. Arnold, and I. H. Marshall. 1996. Damage tolerance of CSM laminates subject to low velocity oblique impacts. Composite Structures 34 (1):101–16. doi:10.1016/0263-8223(95)00137-9.
  • Mahapatra, T. R., S. K. Panda, and V. R. Kar. 2016. Geometrically nonlinear flexural analysis of hygro-thermo-elastic laminated composite doubly curved shell panel. International Journal of Mechanics and Materials in Design 12 (2):153–71. doi:10.1007/s10999-015-9299-9.
  • Mirjavadi, S. S., I. Khan, M. Forsat, M. R. Barati, and A. M. S. Hamouda. 2022. Geometrically nonlinear vibration analysis of eccentrically stiffened porous functionally graded annular spherical shell segments. Mechanics Based Design of Structures and Machines 50 (6):2206–20. doi:10.1080/15397734.2020.1771729.
  • Nikrad, S. F., A. Kanellopoulos, M. Bodaghi, Z. T. Chen, and A. Pourasghar. 2021. Large deformation behavior of functionally graded porous curved beams in thermal environment. Archive of Applied Mechanics 91 (5):2255–78. doi:10.1007/s00419-021-01882-9.
  • Pandey, S., and S. Pradyumna. 2021. Thermal shock response of porous functionally graded sandwich curved beam using a new layer wise theory. Mechanics Based Design of Structures and Machines:1–26. doi:10.1080/15397734.2021.1888297.
  • Qin, Z., B. Safaei, X. Pang, and F. Chu. 2019. Traveling wave analysis of rotating functionally graded graphene platelet reinforced nanocomposite cylindrical shells with general boundary conditions. Results in Physics 15:102752. doi:10.1016/j.rinp.2019.102752.
  • Qin, Z., S. Zhao, X. Pang, B. Safaei, and F. Chu. 2020. A unified solution for vibration analysis of laminated functionally graded shallow shells reinforced by graphene with general boundary conditions. International Journal of Mechanical Sciences 170:105341. doi:10.1016/j.ijmecsci.2019.105341.
  • Qin, Z., X. Pang, B. Safaei, and F. Chu. 2019. Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions. Composite Structures 220:847–60. doi:10.1016/j.compstruct.2019.04.046.
  • Ramteke, P. M., and S. K. Panda. 2021. Free vibrational behaviour of multi-directional porous functionally graded structures. Arabian Journal for Science and Engineering 46 (8):7741–56. doi:10.1007/s13369-021-05461-6.
  • Ramteke, P. M., B. P. Mahapatra, S. K. Panda, and N. Sharma. 2020a. Static deflection simulation study of 2D Functionally graded porous structure. Materials Today: Proceedings 33:5544–7.
  • Ramteke, P. M., B. Patel, and S. K. Panda. 2020b. Time-dependent deflection responses of porous FGM structure including pattern and porosity. International Journal of Applied Mechanics 12 (9):2050102. doi:10.1142/S1758825120501021.
  • Ramteke, P. M., B. Patel, and S. K. Panda. 2021c. Nonlinear eigen frequency prediction of functionally graded porous structure with different grading patterns. Waves in Random and Complex Media:1–19. doi:10.1080/17455030.2021.2005850.
  • Ramteke, P. M., K. Mehar, N. Sharma, and S. K. Panda. 2021a. Numerical prediction of deflection and stress responses of functionally graded structure for grading patterns (power-law, sigmoid, and exponential) and variable porosity (even/uneven). Scientia Iranica 28 (2):811–29. doi:10.24200/sci.2020.55581.4290.
  • Ramteke, P. M., N. Sharma, J. Choudhary, P. Hissaria, and S. K. Panda. 2021b. Multidirectional grading influence on static/dynamic deflection and stress responses of porous FG panel structure: A micromechanical approach. Engineering with Computers:1–21. doi:10.1007/s00366-021-01449-w.
  • Ramteke, P. M., S. K. Panda, and B. Patel. 2022. Nonlinear eigenfrequency characteristics of multi-directional functionally graded porous panels. Composite Structures 279:114707. doi:10.1016/j.compstruct.2021.114707.
  • Ramteke, P. M., S. K. Panda, and N. Sharma. 2019. Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure. Steel and Composite Structures. An International Journal 33 (6):865–75.
  • Reddy, J. N., and C. D. Chin. 1998. Thermomechanical analysis of functionally graded cylinders and plates. Journal of Thermal Stresses 21 (6):593–626. doi:10.1080/01495739808956165.
  • Riccio, A., A. Raimondo, and F. Scaramuzzino. 2015. A robust numerical approach for the simulation of skin-stringer debonding growth in stiffened composite panels under compression. Composites Part B: Engineering 71:131–42. doi:10.1016/j.compositesb.2014.11.007.
  • Salehipour, H., D. Shahgholian-Ghahfarokhi, A. Shahsavar, O. Civalek, and M. Edalati. 2022. Static deflection and free vibration analysis of functionally graded and porous cylindrical micro/nano shells based on the three-dimensional elasticity and modified couple stress theories. Mechanics Based Design of Structures and Machines 50 (6):2184–205. doi:10.1080/15397734.2020.1775095.
  • Sayyad, A. S., and Y. M. Ghugal. 2019. Modeling and analysis of functionally graded sandwich beams: A review. Mechanics of Advanced Materials and Structures 26 (21):1776–95. doi:10.1080/15376494.2018.1447178.
  • Shahgholian-Ghahfarokhi, D., G. Rahimi, A. Khodadadi, H. Salehipour, and M. Afrand. 2021. Buckling analyses of FG porous nanocomposite cylindrical shells with graphene platelet reinforcement subjected to uniform external lateral pressure. Mechanics Based Design of Structures and Machines 49 (7):1059–79. doi:10.1080/15397734.2019.1704777.
  • Sharma, A. 2022. Effect of porosity on active vibration control of smart structure using porous functionally graded piezoelectric material. Composite Structures 280:114815. doi:10.1016/j.compstruct.2021.114815.
  • Thanh Binh, C. T., N. Van Long, T. M. Tu, and P. Q. Minh. 2021. Nonlinear vibration of functionally graded porous variable thickness toroidal shell segments surrounded by elastic medium including the thermal effect. Composite Structures 255:112891. doi:10.1016/j.compstruct.2020.112891.
  • Trinh, M. C., and S. E. Kim. 2019. A three variable refined shear deformation theory for porous functionally graded doubly curved shell analysis. Aerospace Science and Technology 94:105356. doi:10.1016/j.ast.2019.105356.
  • Trinh, M. C., D. D. Nguyen, and S. E. Kim. 2019. Effects of porosity and thermomechanical loading on free vibration and nonlinear dynamic response of functionally graded sandwich shells with double curvature. Aerospace Science and Technology 87:119–32. doi:10.1016/j.ast.2019.02.010.
  • Ugural, A. C. 1981. Stresses in plates and shells. New York, NY: McGraw Hill.
  • Wang, Y. Q., and J. W. Zu. 2017a. Vibration behaviors of functionally graded rectangular plates with porosities and moving in thermal environment. Aerospace Science and Technology 69:550–62. doi:10.1016/j.ast.2017.07.023.
  • Wang, Y. Q., and J. W. Zu. 2017b. Large-amplitude vibration of sigmoid functionally graded thin plates with porosities. Thin-Walled Structures 119:911–24. doi:10.1016/j.tws.2017.08.012.
  • Wang, Y. Q., C. Ye, and J. W. Zu. 2019. Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets. Aerospace Science and Technology 85:359–70. doi:10.1016/j.ast.2018.12.022.
  • Wang, Y. Q., Y. H. Wan, and Y. F. Zhang. 2017. Vibrations of longitudinally traveling functionally graded material plates with porosities. European Journal of Mechanics - A/Solids 66:55–68. doi:10.1016/j.euromechsol.2017.06.006.
  • Wang, Y., and D. Wu. 2017. Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory. Aerospace Science and Technology 66:83–91. doi:10.1016/j.ast.2017.03.003.
  • Wattanasakulpong, N., and A. Chaikittiratana. 2015. Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: Chebyshev collocation method. Meccanica 50 (5):1331–42. doi:10.1007/s11012-014-0094-8.
  • Wattanasakulpong, N., and V. Ungbhakorn. 2014. Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerospace Science and Technology 32 (1):111–20. doi:10.1016/j.ast.2013.12.002.
  • Wattanasakulpong, N., B. G. Prusty, D. W. Kelly, and M. Hoffman. 2012. Free vibration analysis of layered functionally graded beams with experimental validation. Materials & Design (1980-2015) 36:182–90. doi:10.1016/j.matdes.2011.10.049.
  • Wu, H., J. Yang, and S. Kitipornchai. 2020. Mechanical analysis of functionally graded porous structures: A review. International Journal of Structural Stability and Dynamics 20 (13):2041015. doi:10.1142/S0219455420410151.
  • Yanga, J., and H. S. Shen. 2003. Non-linear analysis of functionally graded plates under transverse and in-plane loads. International Journal of Non-Linear Mechanics 38 (4):467–82. doi:10.1016/S0020-7462(01)00070-1.
  • Zare Jouneghani, F., R. Dimitri, M. Bacciocchi, and F. Tornabene. 2017. Free vibration analysis of functionally graded porous doubly-curved shells based on the first-order shear deformation theory. Applied Sciences 7 (12):1252. doi:10.3390/app7121252.
  • Zhao, J., F. Xie, A. Wang, C. Shuai, J. Tang, and Q. Wang. 2019. Vibration behavior of the functionally graded porous (FGP) doubly-curved panels and shells of revolution by using a semi-analytical method. Composites Part B: Engineering 157:219–38. doi:10.1016/j.compositesb.2018.08.087.
  • Zhou, J., M. Xu, and Z. Yang. 2020. Nonlinear aeroelastic analysis of heated curved panels in supersonic air flow. International Journal of Aeronautical and Space Sciences 21 (4):996–1016. doi:10.1007/s42405-019-00229-7.
  • Zhu, J., Z. Lai, Z. Yin, J. Jeon, and S. Lee. 2001. Fabrication of ZrO2–NiCr functionally graded material by powder metallurgy. Materials Chemistry and Physics 68 (1–3):130–5. doi:10.1016/S0254-0584(00)00355-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.