83
Views
0
CrossRef citations to date
0
Altmetric
Articles

Innovative statistical approach on graphical optimization and closed-form dynamic response of the poroelastic nanocomposite sandwich structure

&
Pages 894-921 | Received 31 Jul 2021, Accepted 05 Sep 2022, Published online: 23 Oct 2022

References

  • Akbari, H., M. Azadi, and H. Fahham. 2022. Free vibration analysis of thick sandwich cylindrical panels with saturated FG-porous core. Mechanics Based Design of Structures and Machines 50 (4):1268–86. doi:10.1080/15397734.2020.1748051.
  • Ansari, R., and J. Torabi. 2019. Semi-analytical postbuckling analysis of polymer nanocomposite cylindrical shells reinforced with functionally graded graphene platelets. Thin-Walled Structures 144:106248. doi:10.1016/j.tws.2019.106248.
  • Arsenault, R. J., and M. Taya. 1987. Thermal residual stress in metal matrix composite. Acta Metallurgica 35 (3):651–9. doi:10.1016/0001-6160(87)90188-X.
  • Bardell, N. S., J. M. Dunsdon, and R. S. Langley. 1998. Free vibration of thin, isotropic, open, conical panels. Journal of Sound and Vibration 217 (2):297–320. doi:10.1006/jsvi.1998.1761.
  • Bhagat, V., P. Jeyaraj, and S. M. Murigendrappa. 2016. Buckling and free vibration characteristics of a uniformly heated isotropic cylindrical panel. Procedia Engineering 144:474–81. doi:10.1016/j.proeng.2016.05.158.
  • Chang-Qing, C., and S. Ya-Peng. 1997. Stability analysis of piezoelectric circular cylindrical shells. Journal of Applied Mechanics 64 (4):847–52. doi:10.1115/1.2788991.
  • Chen, D., J. Yang, and S. Kitipornchai. 2017. Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams. Composites Science and Technology 142:235–45. doi:10.1016/j.compscitech.2017.02.008.
  • Du, J., X. Jin, J. Wang, and Y. Zhou. 2007. SH wave propagation in a cylindrically layered piezoelectric structure with initial stress. Acta Mechanica 191 (12):59–74. doi:10.1007/s00707-007-0447-7.
  • Fameso, F., and D. Desai. 2020. Explicit analysis using time-dependent damping simulation of one-sided laser shock peening on martensitic steel turbine blades. Simulation 96 (12):927–38. doi:10.1177/0037549720954272.
  • Gao, K., D. M. Do, R. Li, S. Kitipornchai, and J. Yang. 2020. Probabilistic stability analysis of functionally graded graphene reinforced porous beams. Aerospace Science and Technology 98:105738. doi:10.1016/j.ast.2020.105738.
  • Gao, K., Q. Huang, S. Kitipornchai, and J. Yang. 2021. Nonlinear dynamic buckling of functionally graded porous beams. Mechanics of Advanced Materials and Structures 28 (4):418–29. doi:10.1080/15376494.2019.1567888.
  • Gao, K., R. Li, and J. Yang. 2019. Dynamic characteristics of functionally graded porous beams with interval material properties. Engineering Structures 197:109441. doi:10.1016/j.engstruct.2019.109441.
  • Gao, K., W. Gao, B. Wu, D. Wu, and C. Song. 2018a. Nonlinear primary resonance of functionally graded porous cylindrical shells using the method of multiple scales. Thin-Walled Structures 125:281–93. doi:10.1016/j.tws.2017.12.039.
  • Gao, K., W. Gao, D. Chen, and J. Yang. 2018a. Nonlinear free vibration of functionally graded graphene platelets reinforced porous nanocomposite plates resting on elastic foundation. Composite Structures 204:831–46. doi:10.1016/j.compstruct.2018.08.013.
  • Gibson, I., and M. F. Ashby. 1982. The mechanics of three-dimensional cellular materials. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 382:43–59.
  • Golchi, M., M. Talebitooti, and R. Talebitooti. 2019. Thermal buckling and free vibration of FG truncated conical shells with stringer and ring stiffeners using differential quadrature method. Null 47 (3):255–82. doi:10.1080/15397734.2018.1545588.
  • Hao, R.-B.,Z.-Q. Lu,H. Ding, andL.-Q. Chen. 2022. A nonlinear vibration isolator supported on a flexible plate: Analysis and experiment. Nonlinear Dynamics 108 (2):941–58. doi:10.1007/s11071-022-07243-7.
  • Heimbs, S., M. Hoffmann, M. Waimer, S. Schmeer, and J. Blaurock. 2013. Dynamic testing and modelling of composite fuselage frames and fasteners for aircraft crash simulations. International Journal of Crashworthiness 18 (4):406–22. doi:10.1080/13588265.2013.801294.
  • Huberty, C. J., and S. Olejnik. 2006. Applied MANOVA and discriminant analysis. Hoboken, NJ: Wiley.
  • Jabbari, M., S. Karampour, and M. Eslami. 2013. Steady state thermal and mechanical stresses of a poro-piezo-FGM hollow sphere. Meccanica 48 (3):699–719. doi:10.1007/s11012-012-9625-3.
  • Katariya, P. V., and S. K. Panda. 2019. Numerical evaluation of transient deflection and frequency responses of sandwich shell structure using higher order theory and different mechanical loadings. Engineering with Computers 35 (3):1009–26. doi:10.1007/s00366-018-0646-y.
  • Kholdi, M., A. Loghman, H. Ashrafi, and M. Arefi. 2020. Analysis of thick-walled spherical shells subjected to external pressure: Elastoplastic and residual stress analysis. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 234 (1):186–97. doi:10.1177/1464420719882958.
  • Kitipornchai, S., D. Chen, and J. Yang. 2017. Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Materials & Design 116:656–65. doi:10.1016/j.matdes.2016.12.061.
  • Kumar, B., and S. Bag. 2019. Phase transformation effect in distortion and residual stress of thin-sheet laser welded Ti-alloy. Optics and Lasers in Engineering 122:209–24. doi:10.1016/j.optlaseng.2019.06.008.
  • Lei, Y.-L., K. Gao, X. Wang, and J. Yang. 2020. Dynamic behaviors of single- and multi-span functionally graded porous beams with flexible boundary constraints. Applied Mathematical Modelling 83:754–76. doi:10.1016/j.apm.2020.03.017.
  • Luzin, V., K. Spencer, and M.-X. Zhang. 2011. Residual stress and thermo-mechanical properties of cold spray metal coatings. Acta Materialia 59 (3):1259–70. doi:10.1016/j.actamat.2010.10.058.
  • Mehar, K., and S. K. Panda. 2018. Thermal free vibration behavior of FG-CNT reinforced sandwich curved panel using finite element method. Polymer Composites 39 (8):2751–64. doi:10.1002/pc.24266.
  • Mirjavadi, S. S., I. Khan, M. Forsat, M. R. Barati, and A. Hamouda. 2020. Analyzing nonlinear vibration of metal foam stiffened toroidal convex/concave shell segments considering porosity distribution. Mechanics Based Design of Structures and Machines 1–17. doi:10.1080/15397734.2020.1841654.
  • Mu, S.,Q. Liu,P. Kidkhunthod,X. Zhou,W. Wang, andY. Tang. 2021. Molecular grafting towards high-fraction active nanodots implanted in N-doped carbon for sodium dual-ion batteries. National Science Review 8 (7):nwaa178. doi:10.1093/nsr/nwaa178.
  • Ning, F.,G. He,C. Sheng,H. He,J. Wang,R. Zhou, andX. Ning. 2021. Yarn on yarn abrasion performance of high modulus polyethylene fiber improved by graphene/polyurethane composites coating. Journal of Engineered Fibers and Fabrics 16:155892502098356. doi:10.1177/1558925020983563.
  • Pope, P., and J. Webster. 1972. The use of an F-statistic in stepwise regression procedures. Technometrics 14 (2):327–40. doi:10.2307/1267425.
  • Rafiee, M. A., J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu, and N. Koratkar. 2009. Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3 (12):3884–90. doi:10.1021/nn9010472.
  • Rahimi, A., and A. Alibeigloo. 2020. High-accuracy approach for thermomechanical vibration analysis of FG-GPLRC fluid-conveying viscoelastic thick cylindrical shell. International Journal of Applied Mechanics 12 (07):2050073. doi:10.1142/S1758825120500738.
  • Ramu, I., and S. Mohanty. 2012. Study on free vibration analysis of rectangular plate structures using finite element method. Procedia Engineering 38:2758–66. doi:10.1016/j.proeng.2012.06.323.
  • Saberi, L., and M. Amiri. 2021. Modeling atmospheric corrosion under dynamic thin film electrolyte. Journal of the Electrochemical Society 168 (8):081506. doi:10.1149/1945-7111/ac1b24.
  • Shahgholian-Ghahfarokhi, D., M. Safarpour, and A. Rahimi. 2021. Torsional buckling analyses of functionally graded porous nanocomposite cylindrical shells reinforced with graphene platelets (GPLs). Mechanics Based Design of Structures and Machines 49 (1):81–102. doi:10.1080/15397734.2019.1666723.
  • Shen, H.-S., and H. Wang. 2014. Nonlinear vibration of shear deformable FGM cylindrical panels resting on elastic foundations in thermal environments. Composites Part B: Engineering 60:167–77. doi:10.1016/j.compositesb.2013.12.051.
  • Sheng, C.,G. He,Z. Hu,C. Chou,J. Shi,J. Li,Q. Meng,X. Ning,L. Wang, andF. Ning. 2021. Yarn on yarn abrasion failure mechanism of ultrahigh molecular weight polyethylene fiber. Journal of Engineered Fibers and Fabrics 16:155892502110527. doi:10.1177/15589250211052766.
  • Shi, X., J. Li, and M. Habibi. 2022. On the statics and dynamics of an electro-thermo-mechanically porous GPLRC nanoshell conveying fluid flow. Mechanics Based Design of Structures and Machines 50 (6):2147–83. doi:10.1080/15397734.2020.1772088.
  • Song, M., S. Kitipornchai, and J. Yang. 2017. Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Composite Structures 159:579–88. doi:10.1016/j.compstruct.2016.09.070.
  • Thang, P. T., T. N. Thoi, and J. Lee. 2019. Closed-form solution for nonlinear buckling analysis of FG-CNTRC cylindrical shells with initial geometric imperfections. European Journal of Mechanics - A/Solids 73:483–91. doi:10.1016/j.euromechsol.2018.10.008.
  • Wang, M.,C. Jiang,S. Zhang,X. Song,Y. Tang, andH.-M. Cheng. 2018. Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nature Chemistry 10 (6):667–72. doi:10.1038/s41557-018-0045-4.
  • Wei, G. 2. 2001. A new algorithm for solving some mechanical problems. Computer Methods in Applied Mechanics and Engineering 190 (1517):2017–30. doi:10.1016/S0045-7825(00)00219-X.
  • Wu, Y.,Y. Zhao,X. Han,G. Jiang,J. Shi,P. Liu,M. Z. Khan,H. Huhtinen,J. Zhu,Z. Jin, et al. 2021. Ultra-fast growth of cuprate superconducting films: Dual-phase liquid assisted epitaxy and strong flux pinning. Materials Today Physics 18:100400. doi:10.1016/j.mtphys.2021.100400.
  • Wu, H., J. Yang, and S. Kitipornchai. 2020. Mechanical analysis of functionally graded porous structures: A review. International Journal of Structural Stability and Dynamics 20 (13):2041015. doi:10.1142/S0219455420410151.
  • Wu, H., J. Zhu, S. Kitipornchai, Q. Wang, L.-L. Ke, and J. Yang. 2020. Large amplitude vibration of functionally graded graphene nanocomposite annular plates in thermal environments. Composite Structures 239:112047. doi:10.1016/j.compstruct.2020.112047.
  • Xu, L.,M. Cai,S. Dong,S. Yin,T. Xiao,Z. Dai,Y. Wang, andM. Reza Soltanian. 2022. An upscaling approach to predict mine water inflow from roof sandstone aquifers. Journal of Hydrology 612:128314. doi:10.1016/j.jhydrol.2022.128314.
  • Yang, J., D. Chen, and S. Kitipornchai. 2018. Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method. Composite Structures 193:281–94. doi:10.1016/j.compstruct.2018.03.090.
  • Zhang, X.,Y. Tang,F. Zhang, andC.-S. Lee. 2016. A novel aluminum-graphite dual-ion battery. Advanced Energy Materials 6 (11):1502588. doi:10.1002/aenm.201502588.
  • Zhong, Y.,J. Xie,Y. Chen,L. Yin,P. He, andW. Lu. 2022. Microstructure and mechanical properties of micro laser welding NiTiNb/Ti6Al4V dissimilar alloys lap joints with nickel interlayer. Materials Letters 306:130896. doi:10.1016/j.matlet.2021.130896.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.