232
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Performance analysis of composite laminates wing skin with the aid of fluid structure interaction of aerodynamic loading-structural analysis

, , , ORCID Icon &
Pages 922-942 | Received 15 Mar 2022, Accepted 16 Sep 2022, Published online: 29 Sep 2022

References

  • Aftab, S. M., and K. A. Ahmad. 2017. Correction: CFD study on NACA 4415 airfoil implementing spherical and sinusoidal tubercle leading edge. Plos One 12 (8):E0183456. (PLoS One 12 (11):1–27. doi:10.1371/Journal.Pone.0183456).
  • Aftab, S. M., A. S. Mohd Rafie, N. A. Razak, and K. A. Ahmad. 2016. Turbulence model selection for low Reynolds number flows. Plos One 11 (4):1–15. doi:10.1371/journal.pone.0153755.
  • Alsulami, A., M. Akbar, and W. Y. Joe. 2017. A comparative study: Aerodynamics of morphed airfoils using CFD techniques and analytical tools. In ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), Tampa, FL, vol. 1: 1–10. doi:10.1115/IMECE2017-72269.
  • Ansari, M. I., and A. Kumar. 2019. Bending analysis of functionally graded CNT reinforced doubly curved singly ruled truncated rhombic cone. Mechanics Based Design of Structures and Machines 47 (1):67–86. doi:10.1080/15397734.2018.1519635.
  • Attene, F., F. Balduzzi, A. Bianchini, and M. S. Campobasso. 2020. Using experimentally validated Navier-Stokes CFD to minimize tidal stream turbine power losses due to wake/turbine interactions. Sustainability 12 (21):2–26. doi:10.3390/su12218768.
  • Autio, M., H. Parviainen, and A. Pramila. 1992. Accuracy of the finite element method in analyzing laminated plate and pipe structures. Mechanics of Composite Materials 28 (3):236–45. doi:10.1007/BF00604915.
  • Balakrishnan, S., A. A. Basri, B. Ernnie Illyani, and H. M. Y. Muhamad. 2021. Effects of different thickness of UAV airfoil on aerodynamics performance using CFD techniques. Journal of Aeronautics, Astronautics and Aviation 53 (2):275–82.
  • Basri, A. A., M. Zuber, E. I. Basri, M. S. Zakaria, A. F. A. Aziz, M. Tamagawa, and K. A. Ahmad. 2020. Fluid structure interaction on paravalvular leakage of transcatheter aortic valve implantation related to aortic stenosis: A patient-specific case. Computational and Mathematical Methods in Medicine 2020:9163085. doi:10.1155/2020/9163085.
  • Basri, A. A.,M. Zuber, E. I. Basri, M. S. Zakaria, A. F. A. Aziz, M. Tamagawa, and K. A. Ahmad. 2021. Fluid-structure interaction in problems of patient specific transcatheter aortic valve implantation with and without paravalvular leakage complication. Fluid Dynamics and Materials Processing 17 (3):531–53.
  • Basri, E. I., A. A. Basri, et al. 2019. UAV NACA4415 wing structural performance analysis subjected to external aerodynamic load using Schrenk’s approximation. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 60 (2):178–90.
  • Basri, E. I., F. Mustapha, M. T. H. Sultan, A. A. Basri, M. F. Abas, M. S. A. Majid, and K. A. Ahmad. 2019. Conceptual design and simulation validation based finite element optimisation for tubercle leading edge composite wing of an unmanned aerial vehicle. Journal of Materials Research and Technology 8 (5):4374–86. doi:10.1016/j.jmrt.2019.07.049.
  • Basri, E. I., M. T. H. Sultan, A. A. Basri, F. Mustapha, and K. A. Ahmad. 2021. Consideration of lamination structural analysis in a multi-layered composite and failure analysis on wing design application. Materials 14 (13):3705. doi:10.3390/ma14133705.
  • Basri, E. I., M. T. Sultan, M. Faizal, A. A. Basri, M. F. Abas, M. A. Majid, J. S. Mandeep, and K. A. Ahmad. 2019. Performance analysis of composite ply orientation in aeronautical application of unmanned aerial vehicle (UAV) NACA4415 wing. Journal of Materials Research and Technology 8 (5):3822–34. doi:10.1016/j.jmrt.2019.06.044.
  • Birman, V., and G. A. Kardomateas. 2018. Review of current trends in research and applications of sandwich structures. Composites Part B: Engineering 142:221–40. doi:10.1016/j.compositesb.2018.01.027.
  • Byrd, A. W. 2014. Fluid-structure interaction simulations of a flapping wing micro air vehicle. Master thesis, Wright State University.
  • Chaubey, A. K., A. Kumar, and A. Chakrabarti. 2018. Novel shear deformation model for moderately thick and deep laminated composite conoidal shell. Mechanics Based Design of Structures and Machines 46 (5):650–68. doi:10.1080/15397734.2017.1422433.
  • Estrada, H., and P. E. F. Aguiniga. 2005. Analysis of laminated composites: A web-based computer program based on classical lamination theory. In Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition, Portland, OR.
  • Fairuz, Z. M., M. Z. Abdullah, M. Zubair, M. Abdul Mujeebu, M. K. Abdullah, H. Yusoff, and M. S. Abdul Aziz. 2016. Effect of wing deformation on the aerodynamic performance of flapping wings: Fluid-structure interaction approach. Journal of Aerospace Engineering 29 (4):28–9. doi:10.1061/(ASCE)AS.1943-5525.0000548.
  • Faris, A. F. A. et al. 2021. Propeller design and performance evaluation by using computational fluid dynamics (CFD): A review. Journal of Aeronautics, Astronautics and Aviation 53 (2):263–74.
  • Faris, A. F. A. 2022. Aerodynamics effects of APC slow flyer propeller blade design with different airfoil origin positions. Journal of Aeronautics, Astronautics and Aviation 54 (3):325–34.
  • Ferziger, J. H., and M. Peric. 2002. Vasa Computational Methods for Fluid Dynamics. 3rd ed. Berlin: Springer Berlin Heidelberg.
  • Gamino, M., S. Abankwa, and R. Pascali. 2013. FSI methodology for analyzing VIV on subsea piping components with practical boundary conditions. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering – OMAE 7, Nantes, France. doi:10.1115/OMAE2013-10419.
  • Serdar Genç, M., G. Lock, and Ü. Kaynak. 2008. An experimental and computational study of low Re number transitional flows over an aerofoil with leading edge slat. In 8th AIAA Aviation Technology, Integration and Operations (ATIO) Conference, September 1–16, Anchorage, AK.
  • Ghoddoussi, A., and L. Scott Miller. 2012. A conceptual study of airfoil performance enhancements using CFD. In AIAA Atmospheric Flight Mechanics Conference 2012, August 1–18. doi:10.2514/6.2012-4655.
  • Grodzki, W., and A. Łukaszewicz. 2015. Design and manufacture of umanned aerial vehicles (UAV) wing structure using composite materials. Materialwissenschaft Und Werkstofftechnik 46 (3):269–78. doi:10.1002/mawe.201500351.
  • Hashin, Z. 1980. Failure criteria for unidirectional fibre composites. Journal of Applied Mechanics 47 (2):329–34. doi:10.1115/1.3153664.
  • Huntley, S. J., B. K. Woods, and C. B. Allen. 2019. Computational analysis of the aerodynamics of camber morphing. AIAA Avia 2019 Forum (June 17-21), Dallas, TX, 1–20. doi:10.2514/6.2019-2914.
  • Jo, J. C. 2004. Fluid-structure interactions. In Encyclopedia of life support systems. Chapter: Physical sciences, Engineering and Technology Resources, eds. Y. W. Kwon and P.-S. Lam, 1–12. Paris, France.
  • Kamakoti, R., and W. Shyy. 2004. Fluid-structure interaction for aeroelastic applications. Progress in Aerospace Sciences 40 (8):535–58. doi:10.1016/j.paerosci.2005.01.001.
  • Kamal, N. N. M., et al. 2019. Comparison study between Schrenk’s approximation method and computational fluid dynamics of aerodynamic loading on UAV NACA 4415 wing. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 2 (2):283–92.
  • Kanesan, G., S. Mansor, and A. Abdul-Latif. 2014. Validation of UAV wing structural model for finite element analysis. Jurnal Teknologi 71 (2):1–5. doi:10.11113/jt.v71.3710.
  • Kavya, G., and B. R. Reddy. 2015. Design and finite element analysis of aircraft wing using ribs and spars. International Journal and Magazine of Engineering, Technology, Management and Research 2 (11):1443–55.
  • Kotousov, A., and C. Hui Wang. 2002. Fundamental solutions for the generalised plane strain theory. International Journal of Engineering Science 40 (15):1775–90. doi:10.1016/S0020-7225(02)00041-1.
  • Kumar, A., P. Bhargava, and A. Chakrabarti. 2013. Vibration of laminated composite skew hypar shells using higher order theory. Thin-Walled Structures 63:82–90. doi:10.1016/j.tws.2012.09.007.
  • Kumar, A., A. Chakrabarti, and P. Bhargava. 2013. Vibration of laminated composites and sandwich shells based on higher order zigzag theory. Engineering Structures 56:880–8. doi:10.1016/j.engstruct.2013.06.014.
  • Vinoth Kumar, T. S., A. W. Basha, M. Pavithra, and V. Srilekha. 2015. Static & dynamic analysis of a typical aircraft wing structure using MSC Nastran. International Journal of Research in Aeronautical and Mechanical Engineering 3 (8):1–12.
  • Lee, Y.-G., and C. Kim. 2012. Fluid-structure interaction analysis for UAV wing design optimization. Korean Conference on Industrial and Applied Mathematics 7 (1):107–12.
  • Lewthwaite, M. T., and C. V. Amaechi. 2022. Numerical investigation of winglet aerodynamics and dimple effect of NACA 0017 airfoil for a freight aircraft. Inventions 7 (1):31. doi:10.3390/inventions7010031.
  • Gómez López, A., I. Pérez Reyes, A. López Villa, and R. O. Vargas Aguilar. 2016. Stochastic simulation for couette flow of dilute polymer solutions using Hookean dumbbells. In Recent advances in fluid dynamics with environmental applications, ed. J. Klapp. Switzerland: Springer International Publishing, 217–28.
  • Menter, F. R. 1992. Improved two-equation k-omega turbulence models for aerodynamic flows. NASA Technical Memorandum 103978: 1–31.
  • Miller, S. C., Markus, P. R., and J. J. James, 2015. Fluid-structure interaction of a variable camber compliant wing. In 53rd AIAA Aerospace Sciences Meeting, Florida , 1–12. doi:10.2514/6.2015-1235/5Cn.
  • Mishra, B. B., A. Kumar, and U. Topal. 2020. Stochastic normal mode frequency analysis of hybrid angle ply laminated composite skew plate with opening using a novel approach. Mechanics Based Design of Structures and Machines 1–35. doi:10.1080/15397734.2020.1840393.
  • Mostafa, N. H., Z. N. Ismarrubie, S. M. Sapuan, and M. T. Sultan. 2016. The influence of equi-biaxially fabric prestressing on the flexural performance of woven E-glass/polyester-reinforced composites. Journal of Composite Materials 50 (24):3385–93. doi:10.1177/0021998315620478.
  • Nabillah, N, et al. 2020. Validation and verification of aerodynamics loading of Schrenk approximation, Prandtl lifting-line and computational fluid dynamics with. Journal of Aeronautics, Astronautics and Aviation 53:283–8.
  • Niu, W., Y. Zhang, H. Chen, and M. Zhang. 2020. Numerical study of a supercritical airfoil/wing with variable-camber technology. Chinese Journal of Aeronautics 33 (7):1850–66. doi:10.1016/j.cja.2020.01.008.
  • Nurhaniza, M., M. K. A. Ariffin, A. Ali, F. Mustapha, and A. W. Noraini. 2010. Finite element analysis of composites materials for aerospace applications. IOP Conference Series: Materials Science and Engineering 11 (1):012010(1)–012010(7). doi:10.1088/1757-899X/11/1/012010.
  • Paradies, R., and P. Ciresa. 2009. Active wing design with integrated flight control using piezoelectric macro fiber composites. Smart Materials and Structures 18 (3):035010. doi:10.1088/0964-1726/18/3/035010.
  • Raja, R. S. 2012. Coupled fluid structure interaction analysis on a cylinder exposed to ocean wave loading. Thesis, Chalmers University of Technology, Göteborg, Sweden.
  • Salman, S. D., M. J. Sharba, Z. Leman, M. T. H. Sultan, M. R. Ishak, and F. Cardona. 2016. Tension-compression fatigue behavior of plain woven kenaf/kevlar hybrid composites. BioResources 11 (2):3575–86. doi:10.15376/biores.11.2.3575-3586.
  • Salman, S. D., Z. Leman, M. T. H. Sultan, M. R. Ishak, and F. Cardona. 2017. Effect of kenaf fibers on trauma penetration depth and ballistic impact resistance for laminated composites. Textile Research Journal 87 (17):2051–65. doi:10.1177/0040517516663155.
  • Schmid, S., T. Lutz, and E. Krämer. 2009. Impact of modelling approaches on the prediction of ground effect aerodynamics. Engineering Applications of Computational Fluid Mechanics 3 (3):419–29. doi:10.1080/19942060.2009.11015280.
  • Selig, M. S., and B. D. McGranahan. 1995. Summary of low speed airfoil data, vol. 5. Urbana-Champaign: Department of Aerospace Engineering, University of Illinois.
  • Shabeer, K. P., and M. A. Murtaza. 2013. Optimization of aircraft wing with composite material. International Journal of Innovative Research in Science, Engineering and Technology 2 (6):2471–7.
  • Singh, J., J. Singh, A. Singh, A. Rana, and A. Dahiya. 2015. Study of NACA 4412 and Selig 1223 airfoils through computational fluid dynamics. International Journal of Mechanical Engineering 2 (6):17–21. doi:10.14445/23488360/IJME-V2I6P104.
  • Tang, J. 2008. Computational fluid-structure interaction of a deformable flapping wing for micro air vehicle applications. In 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 1–20.
  • Vanderhoydonck, B., G. Santo, J. Vierendeels, and J. Degroote. 2016. Optimization of a human-powered aircraft using fluid–structure interaction simulations. Aerospace 3 (3):26–47. doi:10.3390/aerospace3030026.
  • Wang, P. 2016. Design, modeling and control of trailing edge morphing UAV. Thesis, Wichita State University, KS.
  • Woods, B. K. S., and M. I. Friswell. 2013. Fluid–structure interaction analysis of the fish bone active camber mechanism. In 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 1–15.
  • Yazik, M. H. M., M. Tamagawa, M. T. H. Sultan, and A. Adzrif. 2020. Computational study on aerodynamic characteristics and behaviour of S5010 airfoil. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 66 (1):42–52.
  • Zhao, A., Z. Hui, H. Jin, and D. Wen. 2019. Analysis on the aerodynamic characteristics of a continuous whole variable camber airfoil. Journal of Physics: Conference Series 1215 (1):012005. doi:10.1088/1742-6596/1215/1/012005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.