142
Views
1
CrossRef citations to date
0
Altmetric
Articles

Free vibrational behavior of functionally graded carbon nanotube composite fluid-filled cylindrical-conical shell: Analytical and experimental investigation

ORCID Icon, &
Pages 1014-1041 | Received 21 May 2022, Accepted 25 Sep 2022, Published online: 12 Oct 2022

Reference

  • Ansari, R., J. Torabi, and V. F. Shojaei. 2018. Free vibration analysis of embedded functionally graded carbon nanotube-reinforced composite conical/cylindrical shells and annular plates using a numerical approach. Journal of Vibration and Control 24 (6):1123–44. doi:10.1177/1077546316659172.
  • Bagheri, H., Y. Kiani, and M. Eslami. 2017. Free vibration of joined conical-conical shells. Thin-Walled Structures 120:446–57. doi:10.1016/j.tws.2017.06.032.
  • Banijamali, S. M., and A. A. Jafari. 2021. Free vibration analysis of rotating functionally graded conical shells reinforced by anisogrid lattice structure. Mechanics Based Design of Structures and Machines :1–23. doi:10.1080/15397734.2021.1881539.
  • Birman, V., S. Griffin, and G. Knowles. 2000. Axisymmetric dynamics of composite spherical shells with active piezoelectric/composite stiffeners. Acta Mechanica 141 (1–2):71–83. doi:10.1007/BF01176808.
  • Caresta, M., and N. J. Kessissoglou. 2010. Free vibrational characteristics of isotropic coupled cylindrical-conical shells. Journal of Sound and Vibration 329 (6):733–51. doi:10.1016/j.jsv.2009.10.003.
  • Damatty, A., M. S. Saafan, and A. M. I. Sweedan. 2005. Dynamic characteristics of combined conical-cylindrical shells. Thin-Walled Structures 43 (9):1380–97. doi:10.1016/j.tws.2005.04.002.
  • Efraim, E., and M. Eisenberger. 2006. Exact vibration frequencies of segmented axisymmetric shells. Thin-Walled Structures 44 (3):281–9. doi:10.1016/j.tws.2006.03.006.
  • Sobhani, E., A. R. Masoodi, and A. R. Ahmadi-Pari. 2021. Vibration of FG-CNT and FG-GNP sandwich composite coupled conical-cylindrical-conical shell. Composite Structures 273:114281. doi:10.1016/j.compstruct.2021.114281.
  • Ewins, D. J. 2000. Modal testing: Theory and practice. 2nd ed. Philadelphia (PA): Research Studies Press.
  • Fayuan, W., L. Shiqi, H. Yuying, and Z. Yifang. 2001. Vibration analysis of segmented shells coupled with liquid using a mixed FS-BE method*. Mechanics of Structures and Machines 29 (3):373–89. doi:10.1081/SME-100105656.
  • Han, Y., and J. Elliott. 2007. Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Computational Materials Science 39 (2):315–23. doi:10.1016/j.commatsci.2006.06.011.
  • Irie, T., G. Yamada, and Y. Muramoto. 1984. Free vibration of joined conical-cylindrical shels. Journal of Sound and Vibration 95 (1):31–9. doi:10.1016/0022-460X(84)90256-6.
  • Kerboua, Y., and A. A. Lakis. 2016. Numerical model to analyze the aerodynamic behavior of a combined conical–cylindrical shell. Aerospace Science and Technology 58:601–17. doi:10.1016/j.ast.2016.09.019.
  • Kerboua, Y., A. A. Lakis, and M. Hmila. 2010. Vibration analysis of truncated conical shells subjected to flowing fluid. Applied Mathematical Modelling 34 (3):791–809. doi:10.1016/j.apm.2009.06.028.
  • Korn, G. M., and T. M. Korn. 1967. Mathematical handbook for scientists and engineers: Definitions, theorems, and formulas for reference and review. 2nd ed. New York (NY): McGraw-Hill.
  • Kouchakzadeh, M. A., and M. Shakouri. 2014. Free vibration analysis of joined cross-ply laminated conical shells. International Journal of Mechanical Sciences 78:118–25. doi:10.1016/j.ijmecsci.2013.11.008.
  • Lakis, A. A., P. V. Dyke, and H. Ouriche. 1992. Dynamic analysis of anisotropic fluid-filled conical shells. Journal of Fluids and Structures 6 (2):135–62. doi:10.1016/0889-9746(92)90042-2.
  • Liepmann, H. W., and A. Roshko. 1957. Elements of gas dynamics. New York: Wiley.
  • Liew, K. M., Z. X. Lei, and L. W. Zhang. 2015. Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review. Composite Structures 120:90–7. doi:10.1016/j.compstruct.2014.09.041.
  • Liew, K. M., Z. Pan, and L.-W. Zhang. 2020. The recent progress of functionally graded CNT reinforced composites and structures. Science China Physics, Mechanics & Astronomy 63 (3):234601. doi:10.1007/s11433-019-1457-2.
  • Ma, X., G. Jin, S. Shuangxia, T. Ye, and Z. Liu. 2017. An analytical method for vibration analysis of cylindrical shells coupled with annular plate under general elastic boundary and coupling conditions. Journal of Vibration and Control 23 (2):305–28. doi:10.1177/1077546315576301.
  • Miao, X.,C. Li, andY. Jiang. 2021. Free vibration analysis of metal-ceramic matrix composite laminated cylindrical shell reinforced by CNTs. Composite Structures 260:113262. doi:10.1016/j.compstruct.2020.113262.
  • Moradi-Dastjerdi, R., M. Foroutan, and A. Pourasghar. 2013. Dynamic analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotube by a mesh-free method. Materials & Design 44:256–66. doi:10.1016/j.matdes.2012.07.069.
  • Pan, Z.-Z., X. Chen, and L.-W. Zhang. 2020. Modeling large amplitude vibration of pretwisted hybrid composite blades containing CNTRC layers and matrix cracked FRC layers. Applied Mathematical Modelling 83:640–59. doi:10.1016/j.apm.2020.03.007.
  • Pan, Z., and K. M. Liew. 2020. Predicting vibration characteristics of rotating composite blades containing CNT-reinforced composite laminae and damaged fiber-reinforced composite laminae. Composite Structures 250:112580. doi:10.1016/j.compstruct.2020.112580.
  • Qin, Z.,X. Pang,B. Safaei, andF. Chu. 2019. Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions. Composite Structures 220:847–60. doi:10.1016/j.compstruct.2019.04.046.
  • Qu, Y., Y. Chen, X. Long, H. Hua, and G. Meng. 2013a. A variational method for free vibration analysis of joined cylindrical-conical shells. Journal of Vibration and Control 19 (16):2319–34. doi:10.1177/1077546312456227.
  • Qu, Y., Y. Chen, X. Long, H. Hua, and G. Meng. 2013b. A modified variational approach for vibration analysis of ring-stiffened conical–cylindrical shell combinations. European Journal of Mechanics - A/Solids 37:200–15. doi:10.1016/j.euromechsol.2012.06.006.
  • Qu, Y., S. Wu, Y. Chen, and H. Hua. 2013c. Vibration analysis of ring-stiffened conical–cylindrical–spherical shells based. International Journal of Mechanical Sciences 69:72–84. doi:10.1016/j.ijmecsci.2013.01.026.
  • Rezaiee-Pajand, M., E. Sobhani, and A. R. Masoodi. 2021. Semi-analytical vibrational analysis of functionally graded carbon nanotubes coupled conical-conical shells. Thin-Walled Structures 159:107272. doi:10.1016/j.tws.2020.107272.
  • Safarpour, M., A. R. Rahimi, and A. Alibeigloo. 2020. Static and free vibration analysis of graphene platelets reinforced composite truncated conical shell, cylindrical shell, and annular plate using theory of elasticity and DQM. Mechanics Based Design of Structures and Machines 48 (4):496–524. doi:10.1080/15397734.2019.1646137.
  • Sarkheil, S., M. S. Foumani, and H. M. Navazi. 2016. Theoretical and experimental analysis of the free vibrations of a shell made of n cone segments joined together. Thin-Walled Structures 108:416–27. doi:10.1016/j.tws.2016.08.022.
  • Shahmohammadi, M. A., P. Abdollahi, and H. Salehipour. 2022. Geometrically nonlinear analysis of doubly curved imperfect shallow shells made of functionally graded carbon nanotube reinforced composite (FG_CNTRC). Mechanics Based Design of Structures and Machines 50 (11):3796–820. doi:10.1080/15397734.2020.1822182.
  • Shakouri, M., and M. A. Kouchakzadeh. 2014. Free vibration analysis of joined conical shells: Analytical and experimental study. Thin-Walled Structures 85:350–8. doi:10.1016/j.tws.2014.08.022.
  • Shen, H.-S., and X. Q. He. 2017. Large amplitude free vibration of nanotube-reinforced composite doubly curved panels resting on elastic foundations in thermal environments. Journal of Vibration and Control 23 (16):2672–89. doi:10.1177/1077546315619280.
  • Shu, C. 2000. Differential quadrature and its application in engineering. London: Springer-Verlag Ltd.
  • Suzuki, K., G. Shikanai, and T. Chino. 1998. Vibrations of composite circular cylindrical vessels. International Journal of Solids and Structures 35 (22):2877–99. doi:10.1016/S0020-7683(97)00356-9.
  • Xie, X., H. Zheng, and G. Jin. 2015. Integrated orthogonal polynomials based spectral collocation method for vibration analysis of coupled laminated shell structures. International Journal of Mechanical Sciences 98:132–43. doi:10.1016/j.ijmecsci.2015.04.018.
  • Yuan, J., and S. M. Dickinson. 1994. The free vibration of circularly cylindrical shell and plate systems. Journal of Sound and Vibration 175 (2):241–63. doi:10.1006/jsvi.1994.1326.
  • Zhang, L. W.,Z. G. Song, andK. M. Liew. 2017. Modeling aerothermoelastic properties and active flutter control of nanocomposite cylindrical shells in supersonic airflow under thermal environments. Computer Methods in Applied Mechanics and Engineering 325:416–33. doi:10.1016/j.cma.2017.07.014.
  • Zhang, L. W. 2017. An element-free based IMLS-Ritz method for buckling analysis of nanocomposite plates of polygonal planform. Engineering Analysis with Boundary Elements 77:10–25. doi:10.1016/j.enganabound.2017.01.004.
  • Zhang, L. W., and K. M. Liew. 2016. Postbuckling analysis of axially compressed CNT reinforced functionally graded composite plates resting on pasternak foundations using an element-free approach. Composite Structures 138:40–51. doi:10.1016/j.compstruct.2015.11.031.
  • Zhang, L. W., K. M. Liew, and J. N. Reddy. 2016a. Postbuckling analysis of bi-axially compressed laminated nanocomposite plates using the first-order shear deformation theory. Composite Structures 152:418–31. doi:10.1016/j.compstruct.2016.05.040.
  • Zhang, L. W., K. M. Liew, and J. N. Reddy. 2016b. Postbuckling behavior of bi-axially compressed arbitrarily straight-sided quadrilateral functionally graded material plates. Computer Methods in Applied Mechanics and Engineering 300:593–610. doi:10.1016/j.cma.2015.11.030.
  • Zhang, L. W., K. M. Liew, and J. N. Reddy. 2016c. Postbuckling of carbon nanotube reinforced functionally graded plates with edges elastically restrained against translation and rotation under axial compression. Computer Methods in Applied Mechanics and Engineering 298:1–28. doi:10.1016/j.cma.2015.09.016.
  • Zhang, L. W., and B. A. Selim. 2017. Vibration analysis of CNT-reinforced thick laminated composite plates based on Reddy’s higher-order shear deformation theory. Composite Structures 160:689–705. doi:10.1016/j.compstruct.2016.10.102.
  • Zhang, L. W., Z. G. Song, and K. M. Liew. 2016. Optimal shape control of CNT reinforced functionally graded composite plates using piezoelectric patches. Composites Part B: Engineering 85:140–9. doi:10.1016/j.compositesb.2015.09.044.
  • Zhang, L. W., Z. G. Song, P. Qiao, and K. M. Liew. 2017. Modeling of dynamic responses of CNT-reinforced composite cylindrical shells under impact loads. Computer Methods in Applied Mechanics and Engineering 313:889–903. doi:10.1016/j.cma.2016.10.020.
  • Zhang, L. W., L. N. Xiao, G. L. Zou, and K. M. Liew. 2016a. Elastodynamic analysis of quadrilateral CNT-reinforced functionally graded composite plates using FSDT element-free method. Composite Structures 148:144–54. doi:10.1016/j.compstruct.2016.04.006.
  • Zhang, L. W., Y. Zhang, G. L. Zou, and K. M. Liew. 2016b. Free vibration analysis of triangular CNT-reinforced composite plates subjected to in-plane stresses using FSDT element-free method. Composite Structures 149:247–60. doi:10.1016/j.compstruct.2016.04.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.