78
Views
2
CrossRef citations to date
0
Altmetric
Articles

Analytic detection of chaos zones in response of a shape memory alloy beam under simultaneous external and parametric excitations

ORCID Icon
Pages 1060-1073 | Received 19 May 2022, Accepted 22 Sep 2022, Published online: 22 Oct 2022

References

  • Abedi, M, and A. Asnafi. 2015. To reduce the instability region in the nonlinear transverse vibration of randomly excited plates using orthotropic P-FG material. Nonlinear Dynamics 80(3):1413–30. doi:10.1007/s11071-015-1952-1.
  • Abedi, M, and A. Asnafi. 2016. Instability and bifurcation behavior of orthotropic S-FGM plates under lateral stochastic loads considering variation of material properties. International Journal of Structural Stability and Dynamics 16 (3):1450108. doi:10.1142/S0219455414501089.
  • Arghavani, J., F. Auricchio, R. Naghdabadi, A. Reali, and S. Sohrabpour. 2010. A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings. International Journal of Plasticity 26 (7):976–991. doi:10.1016/j.ijplas.2009.12.003.
  • Ashrafi, M. J., I. Ghaffari, M. Elahinia, and M. R. Nematollahi. 2021. Nonlinear free vibration and damping analysis of a microbeam with pseudoelastic shape memory alloy layer based on the modified couple stress theory. Journal of Vibration and Control 27 (7-8):957–68. doi:10.1177/1077546320935284.
  • Asnafi, A. 2020. Chaotic analysis of Kelvin–Voigt viscoelastic plates under combined transverse periodic and white noise excitation: An analytic approach. Acta Mechanica 231 (1):139–154. doi:10.1007/s00707-019-02535-3.
  • Asnafi, A. 2021. Melnikov-based criterion to obtain the critical velocity in axially moving viscoelastic strings under a set of non-Gaussian parametric bounded noise. Acta Mechanica 232 (9):3495–508. doi:10.1007/s00707-021-03004-6.
  • Asnafi, A. 2022a. Analytic investigation of chaos areas in the response of a Kelvin–Voigt viscoelastic plate under combined harmonically parametric and randomly external excitations. Mechanics Based Design of Structures and Machines 50 (12):4316–4330. doi:10.1080/15397734.2020.1833739.
  • Asnafi, A. R. 2022b. Non-Gaussian additive and multiplicative noise-induced chaos in the lateral vibration of a viscoelastic plate: A fully analytic approach. Journal of Vibration and Control 28 (1/2):92–103. doi:10.1177/1077546320971379.
  • Bikdash, M., B. Balachandran, and A. Navfeh. 1994. Melnikov analysis for a ship with a general roll-damping model. Nonlinear Dynamics 6 (1):101–124. doi:10.1007/BF00045435.
  • Cao, S., O. E. Ozbulut, F. Shi, and J. Deng. 2022. Experimental and numerical investigations on hysteretic response of a multi-level SMA/lead rubber bearing seismic isolation system. Smart Materials and Structures 31 (3):35024. doi:10.1088/1361-665X/ac4f20.
  • Chang, W.-S, and Y. Araki. 2016. Use of shape-memory alloys in construction: A critical review. Proceedings of the Institution of Civil Engineers-Civil Engineering, Thomas Telford Ltd.
  • Cisse, C., W. Zaki, and T. B. Zineb. 2016. A review of constitutive models and modeling techniques for shape memory alloys. International Journal of Plasticity 76:244–84. doi:10.1016/j.ijplas.2015.08.006.
  • Collet, M., E. Foltête, and C. Lexcellent. 2001. Analysis of the behavior of a shape memory alloy beam under dynamical loading. European Journal of Mechanics - A/Solids 20 (4):615–30. doi:10.1016/S0997-7538(01)01159-7.
  • Costa, D. D., M. A. Savi, A. S. de Paula, and D. Bernardini. 2019. Chaos control of a shape memory alloy structure using thermal constrained actuation. International Journal of Non-Linear Mechanics 111:106–18. doi:10.1016/j.ijnonlinmec.2019.02.006.
  • Dong, J., C. Cai, and A. M. Okeil. 2011. Overview of potential and existing applications of shape memory alloys in bridges. Journal of Bridge Engineering 16 (2):305–15. doi:10.1061/(ASCE)BE.1943-5592.0000145.
  • Ge, G. 2014. Response of a shape memory alloy beam model under narrow band noise excitation. Mathematical Problems in Engineering 2014:1–7. doi:10.1155/2014/985467.
  • Ge, G, and J. Xu. 2014. Vibration of a shape memory alloy beam and detecting the threshold value of chaos induced by noise. Materials Research Innovations 18 (sup3):S3-76–S3-80. doi:10.1179/1432891714Z.000000000637.
  • Hasan, S. Q, and A. K. Jabbar. 2019. New analytic approach of mild solution for general formula of extensible beam model equation. IOP Conference Series: Materials Science and Engineering 571 (1):012022. doi:10.1088/1757-899X/571/1/012022.
  • Jan, A. 2007. Smooth and nonsmooth high dimensional chaos and the Melnikov-type methods. Singapore: World Scientific.
  • Jia, Y. 2020. Review of nonlinear vibration energy harvesting: Duffing, bistability, parametric, stochastic and others. Journal of Intelligent Material Systems and Structures 31 (7):921–44. doi:10.1177/1045389X20905989.
  • Johnson, A. D., V. Martynov, and V. Gupta. 2001. Applications of shape memory alloys: Advantages, disadvantages, and limitations. Micromachining and Microfabrication Process Technology VII, International Society for Optics and Photonics, San Francisco, CA.
  • Juhász, L., H. Andrä, and O. Hesebeck. 2000. A constitutive model of shape memory alloys based on viscoplastic like evolution equations. Periodica Polytechnica Mechanical Engineering 44 (1):59–69.
  • Katsikadelis, J, and G. Tsiatas. 2007. Non-linear dynamic stability of damped Beck’s column with variable cross-section. International Journal of Non-Linear Mechanics 42 (1):164–71. doi:10.1016/j.ijnonlinmec.2006.10.019.
  • Khalili, S. M. R., M. B. Dehkordi, E. Carrera, and M. Shariyat. 2013. Non-linear dynamic analysis of a sandwich beam with pseudoelastic SMA hybrid composite faces based on higher order finite element theory. Composite Structures 96:243–55. doi:10.1016/j.compstruct.2012.08.020.
  • Kumar, S., I. A. Kumar, L. Marandi, and I. Sen. 2020. Assessment of small-scale deformation characteristics and stress–strain behavior of NiTi based shape memory alloy using nanoindentation. Acta Materialia 201:303–15. doi:10.1016/j.actamat.2020.09.080.
  • Liew, K., J. Ren, and S. Kitipornchai. 2004. Analysis of the pseudoelastic behavior of a SMA beam by the element-free Galerkin method. Engineering Analysis with Boundary Elements 28 (5):497–507. doi:10.1016/S0955-7997(03)00103-6.
  • Lobo, P. S., J. Almeida, and L. Guerreiro. 2015. Shape memory alloys behaviour: A review. Procedia Engineering 114:776–83. doi:10.1016/j.proeng.2015.08.025.
  • Mel’nikov, V. K. M. 1963. On the stability of a center for time-periodic perturbations. Trudy moskovskogo matematicheskogo obshchestva 12:3–52.
  • Moumni, Z., A. Van Herpen, and P. Riberty. 2005. Fatigue analysis of shape memory alloys: Energy approach. Smart Materials and Structures 14 (5):S287–S292. doi:10.1088/0964-1726/14/5/017.
  • Ozbulut, O. E., S. Hurlebaus, and R. DesRoches. 2011. Seismic response control using shape memory alloys: A review. Journal of Intelligent Material Systems and Structures 22 (14):1531–49. doi:10.1177/1045389X11411220.
  • Panico, M, and L. Brinson. 2007. A three-dimensional phenomenological model for martensite reorientation in shape memory alloys. Journal of the Mechanics and Physics of Solids 55 (11):2491–511. doi:10.1016/j.jmps.2007.03.010.
  • Razavilar, R., A. Fathi, M. Dardel, and J. Arghavani Hadi. 2018. Dynamic analysis of a shape memory alloy beam with pseudoelastic behavior. Journal of Intelligent Material Systems and Structures 29 (9):1835–49. doi:10.1177/1045389X17754268.
  • Rezaei DA, H., M. Kadkhodaei, and H. Nahvi. 2012. Analysis of nonlinear free vibration and damping of a clamped–clamped beam with embedded prestrained shape memory alloy wires. Journal of Intelligent Material Systems and Structures 23 (10):1107–17. doi:10.1177/1045389X12441509.
  • Savi, M. A. 2015. Nonlinear dynamics and chaos in shape memory alloy systems. International Journal of Non-Linear Mechanics 70:2–19. doi:10.1016/j.ijnonlinmec.2014.06.001.
  • Sohani, F, and H. Eipakchi. 2021. Nonlinear geometry effects investigation on free vibrations of beams using shear deformation theory. Mechanics Based Design of Structures and Machines 1–22. doi:10.1080/15397734.2021.1872385.
  • Tsiatas, G. C, and J. T. Katsikadelis. 2009. Post-critical behavior of damped beam columns with variable cross section subjected to distributed follower forces. Nonlinear Dynamics 56 (4):429–41. doi:10.1007/s11071-008-9412-9.
  • Tsiatas, G. C., A. G. Siokas, and E. J. Sapountzakis. 2018. A layered boundary element nonlinear analysis of beams. Frontiers in Built Environment 4:52. doi:10.3389/fbuil.2018.00052.
  • Tsiatas, G. CI. N., and Tsiptsis, A. G. (2020). Nonlinear buckling and post-buckling of shape memory alloy shallow arches. Journal of Applied and Computational Mechanics 6 (3):665–83.
  • Wang, S.-Y., L. Zhan, O. T. Bruhns, and H. Xiao. 2022. Accurately and automatically simulating hysteresis loops of shape memory alloys. Continuum Mechanics and Thermodynamics 34 (3):739–61.
  • Wiggins, S. 2003. Introduction to applied nonlinear dynamical systems and chaos. New York, NY: Springer.
  • Younesian, D., A. Hosseinkhani, H. Askari, and E. Esmailzadeh. 2019. Elastic and viscoelastic foundations: A review on linear and nonlinear vibration modeling and applications. Nonlinear Dynamics 97 (1):853–95. doi:10.1007/s11071-019-04977-9.
  • Zaki, W., X. Gu, C. Morin, Z. Moumni, and W. Zhang. 2014. Time integration and assessment of a model for shape memory alloys considering multiaxial nonproportional loading cases. Smart Materials, Adaptive Structures and Intelligent Systems, American Society of Mechanical Engineers. doi:10.1115/SMASIS2014-7599.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.