156
Views
12
CrossRef citations to date
0
Altmetric
Articles

Agglomeration effects of CNTs on the energy harvesting performance of multifield interactive magneto-electro-elastic/nanocomposite unimorph smart beam

ORCID Icon &
Pages 1324-1350 | Received 21 Jul 2022, Accepted 01 Nov 2022, Published online: 17 Nov 2022

References

  • Abdehvand, M. Z., S. A. S. Roknizadeh, and H. M. Sedighi. 2021. Modeling and analysis of a coupled novel nonlinear magneto-electro-aeroelastic lumped model for a flutter based energy harvesting system. Physica Scripta 96 (2):025213. doi:10.1088/1402-4896/abcdc7.
  • Annigeri, A. R., N. Ganesan, and S. Swarnamani. 2007. Free vibration behaviour of multiphase and layered magneto-electro-elastic beam. Journal of Sound and Vibration 299 (1–2):44–63. doi:10.1016/j.jsv.2006.06.044.
  • Arumugam, A. B., M. Subramani, M. Dalakoti, P. Jindal, R. Selvaraj, and E. Khalife. 2021. Dynamic characteristics of laminated composite CNT reinforced MRE cylindrical sandwich shells using HSDT. Mechanics Based Design of Structures and Machines 1–17. doi:10.1080/15397734.2021.1950550.
  • Choi, K., D. Kim, W. Chung, C. Cho, and S. W. Kang. 2022. Nanostructured thermoelectric composites for efficient energy harvesting in infrastructure construction applications. Cement and Concrete Composites 128:104452. doi:10.1016/j.cemconcomp.2022.104452.
  • Craveiro, D. S, and M. A. Loja. 2021. An assessment of thick nanocomposite plates’ behavior under the influence of carbon nanotubes agglomeration. Journal of Composites Science 5 (2):41. doi:10.3390/jcs5020041.
  • Daikh, A. A., M. S. A. Houari, B. Karami, M. A. Eltaher, R. Dimitri, and F. Tornabene. 2021. Buckling analysis of CNTRC curved sandwich nanobeams in thermal environment. Applied Sciences 11 (7):3250. doi:10.3390/app11073250.
  • Dat, N. D., T. Q. Quan, and N. D. Duc. 2022. Vibration analysis of auxetic laminated plate with magneto-electro-elastic face sheets subjected to blast loading. Composite Structures 280:114925. doi:10.1016/j.compstruct.2021.114925.
  • Drissi-Habti, M., Y. El Assami, and V. Raman. 2021. Multiscale toughening of composites with carbon nanotubes—continuous multiscale reinforcement new concept. Journal of Composites Science 5 (5):135. doi:10.3390/jcs5050135.
  • Ebrahimi, F., N. Farazmandnia, M. R. Kokaba, and V. Mahesh. 2021. Vibration analysis of porous magneto-electro-elastically actuated carbon nanotube-reinforced composite sandwich plate based on a refined plate theory. Engineering with Computers 37 (2):921–36. doi:10.1007/s00366-019-00864-4.
  • Erturk, A, and D. J. Inman. 2008. A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. Journal of Vibration and Acoustics 130 (4) doi:10.1115/1.2890402.
  • Erturk, A, and D. J. Inman. 2008. On mechanical modeling of cantilevered piezoelectric vibration energy harvesters. Journal of Intelligent Material Systems and Structures 19 (11):1311–25. doi:10.1177/1045389X07085639.
  • Erturk, A, and D. J. Inman. 2007. January. Mechanical considerations for modeling of vibration-based energy harvesters. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Vol. 48027, pp. 769–778). doi:10.1115/DETC2007-35440.
  • Ghasemi, A. R., M. Mohandes, R. Dimitri, and F. Tornabene. 2019. Agglomeration effects on the vibrations of CNTs/fiber/polymer/metal hybrid laminates cylindrical shell. Composites Part B: Engineering 167:700–16. doi:10.1016/j.compositesb.2019.03.028.
  • Hassanzadeh-Aghdam, M. K., M. J. Mahmoodi, and R. Ansari. 2019. Creep performance of CNT polymer nanocomposites-An emphasis on viscoelastic interphase and CNT agglomeration. Composites Part B: Engineering 168:274–81. doi:10.1016/j.compositesb.2018.12.093.
  • Jena, S. K., S. Chakraverty, V. Mahesh, D. Harursampath, and H. M. Sedighi. 2022a. Free vibration of functionally graded beam embedded in Winkler-Pasternak elastic foundation with geometrical uncertainties using symmetric Gaussian fuzzy number. The European Physical Journal Plus 137 (3):1–18. doi:10.1140/epjp/s13360-022-02607-9.
  • Jena, S. K., S. Chakraverty, V. Mahesh, D. Harursampath, and H. M. Sedighi. 2022b. A novel numerical approach for the stability of nanobeam exposed to hygro‐thermo‐magnetic environment embedded in elastic foundation. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik :e202100380. doi:10.1002/zamm.202100380.
  • Mahesh, V. 2020. Nonlinear deflection of carbon nanotube reinforced multiphase magneto‐electro‐elastic plates in thermal environment considering pyrocoupling effects. Mathematical Methods in the Applied Sciences doi:10.1002/mma.6858.
  • Mahesh, V. 2021a. Nonlinear damped transient vibrations of carbon nanotube-reinforced magneto-electro-elastic shells with different electromagnetic circuits. Journal of Vibration Engineering & Technologies 10 (1):351–74. doi:10.1007/s42417-021-00380-0.
  • Mahesh, V. 2021b. Nonlinear pyrocoupled deflection of viscoelastic sandwich shell with CNT reinforced magneto-electro-elastic facing subjected to electromagnetic loads in thermal environment. The European Physical Journal Plus 136 (8):1–30. doi:10.1140/epjp/s13360-021-01751-y.
  • Mahesh, V. 2022. Effect of carbon nanotube-reinforced magneto-electro-elastic facings on the pyrocoupled nonlinear deflection of viscoelastic sandwich skew plates in thermal environment. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 236 (1):200–21. doi:10.1177/14644207211044093.
  • Mahesh, V. 2022. Nonlinear damping of auxetic sandwich plates with functionally graded magneto-electro-elastic facings under multiphysics loads and electromagnetic circuits. Composite Structures 290:115523. doi:10.1016/j.compstruct.2022.115523.
  • Mahesh, V. 2022. Porosity effect on the energy harvesting behaviour of functionally graded magneto-electro-elastic/fibre-reinforced composite beam. The European Physical Journal Plus 137 (1):1–39. doi:10.1140/epjp/s13360-021-02235-9.
  • Mahesh, V, and D. Harursampath. 2020a. Nonlinear deflection analysis of CNT/magneto-electro-elastic smart shells under multi-physics loading. Mechanics of Advanced Materials and Structures 29 (7):1047–71. doi:10.1080/15376494.2020.1805059.
  • Mahesh, V, and D. Harursampath. 2020b. Nonlinear vibration of functionally graded magneto-electro-elastic higher order plates reinforced by CNTs using FEM. Engineering with Computers 38 (2):1029–51. doi:10.1007/s00366-020-01098-5.
  • Mangalasseri, A. S., V. Mahesh, S. Mukunda, V. Mahesh, S. A. Ponnusami, and D. Harursampath. 2022. Vibration-based energy harvesting characteristics of functionally graded magneto-electro-elastic beam structures using lumped parameter model. Journal of Vibration Engineering & Technologies 10 (5):1705–20. doi:10.1007/s42417-022-00477-0.
  • Mohammadi, M., M. Arefi, R. Dimitri, and F. Tornabene. 2019. Higher-order thermo-elastic analysis of FG-CNTRC cylindrical vessels surrounded by a Pasternak foundation. Nanomaterials 9 (1):79. doi:10.3390/nano9010079.
  • Mohammadimehr, M., E. Arshid, S. Alhosseini, S. Amir, and M. R. G. Arani. 2019. Free vibration analysis of thick cylindrical MEE composite shells reinforced CNTs with temperature-dependent properties resting on viscoelastic foundation. Structural Engineering and Mechanics, an Int’l Journal 70 (6):683–702. doi:10.12989/sem.2019.70.6.683.
  • Mohammadimehr, M., S. V. Okhravi, and S. Akhavan Alavi. 2018. Free vibration analysis of magneto-electro-elastic cylindrical composite panel reinforced by various distributions of CNTs with considering open and closed circuits boundary conditions based on FSDT. Journal of Vibration and Control 24 (8):1551–69. doi:10.1177/1077546316664022.
  • Moradi-Dastjerdi, R, and K. Behdinan. 2021a. Free vibration response of smart sandwich plates with porous CNT-reinforced and piezoelectric layers. Applied Mathematical Modelling 96:66–79. doi:10.1016/j.apm.2021.03.013.
  • Moradi-Dastjerdi, R, and K. Behdinan. 2021b. Dynamic performance of piezoelectric energy harvesters with a multifunctional nanocomposite substrate. Applied Energy 293:116947. doi:10.1016/j.apenergy.2021.116947.
  • Moradi-Dastjerdi, R., K. Behdinan, B. Safaei, and Z. Qin. 2020a. Static performance of agglomerated CNT-reinforced porous plates bonded with piezoceramic faces. International Journal of Mechanical Sciences 188:105966. doi:10.1016/j.ijmecsci.2020.105966.
  • Moradi-Dastjerdi, R., K. Behdinan, B. Safaei, and Z. Qin. 2020b. Buckling behavior of porous CNT-reinforced plates integrated between active piezoelectric layers. Engineering Structures 222:111141. doi:10.1016/j.engstruct.2020.111141.
  • Narayana, K. J, and R. G. Burela. 2018. A review of recent research on multifunctional composite materials and structures with their applications. Materials Today: Proceedings 5 (2):5580–90. doi:10.1016/j.matpr.2017.12.149.
  • Nejati, M., A. Asanjarani, R. Dimitri, and F. Tornabene. 2017. Static and free vibration analysis of functionally graded conical shells reinforced by carbon nanotubes. International Journal of Mechanical Sciences 130:383–98. doi:10.1016/j.ijmecsci.2017.06.024.
  • Nguyen-Thoi, T., K. D. Ly, T. T. Truong, S. N. Nguyen, and V. Mahesh. 2022. Analysis and optimal control of smart damping for porous functionally graded magneto-electro-elastic plate using smoothed FEM and metaheuristic algorithm. Engineering Structures 259:114062. doi:10.1016/j.engstruct.2022.114062.
  • Punera, D. 2021. The effect of agglomeration and slightly weakened CNT–matrix interface on free vibration response of cylindrical nanocomposites. Acta Mechanica 232 (6):2455–77. doi:10.1007/s00707-020-02933-y.
  • Quang, V. D., T. Q. Quan, and P. Tran. 2022. Static buckling analysis and geometrical optimization of magneto-electro-elastic sandwich plate with auxetic honeycomb core. Thin-Walled Structures 173:108935. doi:10.1016/j.tws.2022.108935.
  • Selvamani, R., M. M. S. Jayan, R. Dimitri, F. Tornabene, and F. Ebrahimi. 2020. Nonlinear magneto-thermo-elastic vibration of mass sensor armchair carbon nanotube resting on an elastic substrate. Curved and Layered Structures 7 (1):153–65. doi:10.1515/cls-2020-0012.
  • Sh, E. L., S. Kattimani, and M. Vinyas. 2022. Nonlinear free vibration and transient responses of porous functionally graded magneto-electro-elastic plates. Archives of Civil and Mechanical Engineering 22 (1):1–26. doi:10.1007/s43452-021-00357-6.
  • Shahmohammadi, M. A., M. Azhari, H. Salehipour, and Ö. Civalek. Ö 2021. A novel composite model for vibration of thin-walled layered composite panels incorporating the agglomeration of CNTs. Aerospace Science and Technology 116:106897. doi:10.1016/j.ast.2021.106897.
  • Shankar, A. N., Murali Krishna, S. M. Chebolu, R. K. S. Singholi, A. Singh, R, and Rajeshkumar, S. 2022. Effect of carbon nanotubes reinforcement on Eigen modes of multi‐smart core sandwich composite cylindrical shell panels. Polymer Composites 43 doi: (2):1078–89. doi:10.1002/pc.26435.
  • Shirbani, M. M., M. Shishesaz, A. Hajnayeb, and H. M. Sedighi. 2017. Coupled magneto-electro-mechanical lumped parameter model for a novel vibration-based magneto-electro-elastic energy harvesting systems. Physica E: Low-Dimensional Systems and Nanostructures 90:158–69. doi:10.1016/j.physe.2017.03.022.
  • Shishesaz, M., M. M. Shirbani, H. M. Sedighi, and A. Hajnayeb. 2018. Design and analytical modeling of magneto-electro-mechanical characteristics of a novel magneto-electro-elastic vibration-based energy harvesting system. Journal of Sound and Vibration 425:149–69. doi:10.1016/j.jsv.2018.03.030.
  • Shorakaei, H., A. R. Shoshtari, and H. R. Karami. 2019. Analytical solution and optimization for energy harvesting from nonlinear vibration of magneto-electro-elastic plate. AUT Journal of Mechanical Engineering 3 (1):63–76. doi:10.22060/ajme.2018.14.453.5728.
  • Siddharth Mangalasseri, A., V. Mahesh, V. Mahesh, S. A. Ponnusami, and D. Harursampath. 2022. Investigation on the interphase effects on the energy harvesting characteristics of three phase magneto-electro-elastic cantilever beam. Mechanics of Advanced Materials and Structures:1–13. doi:10.1080/15376494.2022.2062630.
  • Sobhani, E., Masoodi, A. R. Civalek, O. Ahmadi-Pari, and A. R. 2022. Agglomerated impact of CNT vs. GNP nanofillers on hybridization of polymer matrix for vibration of coupled hemispherical-conical-conical shells. Aerospace Science and Technology 120:107257. doi:10.1016/j.ast.2021.107257.
  • Sofiyev, A. H., F. Tornabene, R. Dimitri, and N. Kuruoglu. 2020. Buckling behavior of FG-CNT reinforced composite conical shells subjected to a combined loading. Nanomaterials 10 (3):419. doi:10.3390/nano10030419.
  • Thirugnanasambantham, K. G., T. Sankaramoorthy, M. K. Reddy, and M. Aditya. 2022. A review: Analysis of load transfer effect in carbon nanotube (CNT) reinforced aluminium (Al) composites. Materials Today: Proceedings 60:1451–5. doi:10.1016/j.matpr.2021.11.066.
  • Tornabene, F., M. Bacciocchi, N. Fantuzzi, and J. N. Reddy. 2019. Multiscale approach for three‐phase CNT/polymer/fiber laminated nanocomposite structures. Polymer Composites 40 (S1):E102–E126. doi:10.1002/pc.24520.
  • Tornabene, F., N. Fantuzzi, M. Bacciocchi, and E. Viola. 2016. Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells. Composites Part B: Engineering 89:187–218. doi:10.1016/j.compositesb.2015.11.016.
  • Twinkle, C. M, and J. Pitchaimani. 2022. A semi-analytical nonlocal elasticity model for static stability and vibration behaviour of agglomerated CNTs reinforced nano cylindrical panel under non-uniform edge loads. Applied Mathematical Modelling 103:68–90. doi:10.1016/j.apm.2021.10.027.
  • Vinyas, M. 2019. A higher-order free vibration analysis of carbon nanotube-reinforced magneto-electro-elastic plates using finite element methods. Composites Part B: Engineering 158:286–301. doi:10.1016/j.compositesb.2018.09.086.
  • Vinyas, M, and D. Harursampath. 2020. Nonlinear vibrations of magneto-electro-elastic doubly curved shells reinforced with carbon nanotubes. Composite Structures 253:112749. doi:10.1016/j.compstruct.2020.112749.
  • Vinyas, M., D. A. Harursampath, and S. C. Kattimani. 2021. On vibration analysis of functionally graded carbon nanotube reinforced magneto-electro-elastic plates with different electro-magnetic conditions using higher order finite element methods. Defence Technology 17 (1):287–303. doi:10.1016/j.dt.2020.03.012.
  • Yousefi, A. H., P. Memarzadeh, H. Afshari, and S. J. Hosseini. 2021. Dynamic characteristics of truncated conical panels made of FRPs reinforced with agglomerated CNTs. In Structures, vol. 33, 4701–17. Elsevier. doi:10.1016/j.istruc.2021.07.046.
  • Zaheri Abdehvand, M., S. A. Seyed Roknizadeh, and H. Mohammad-Sedighi. 2021. Parametric study of a novel magneto-electro-aeroelastic energy harvesting system. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 235 (9):2100–11. doi:10.1177/14644207211020776.
  • Zhang, S. Q., Y. F. Zhao, X. Wang, M. Chen, and R. Schmidt. 2022. Static and dynamic analysis of functionally graded magneto-electro-elastic plates and shells. Composite Structures 281:114950. doi:10.1016/j.compstruct.2021.114950.
  • Zhou, L., J. Wang, M. Liu, M. Li, and Y. Chai. 2022. Evaluation of the transient performance of magneto-electro-elastic based structures with the enriched finite element method. Composite Structures 280:114888. doi:10.1016/j.compstruct.2021.114888.
  • Zhou, L., H. Yang, L. Ma, S. Zhang, X. Li, S. Ren, and M. Li. 2022. On the static analysis of inhomogeneous magneto-electro-elastic plates in thermal environment via element-free Galerkin method. Engineering Analysis with Boundary Elements 134:539–52. doi:10.1016/j.enganabound.2021.11.002.
  • Zhu, X., H. Zhang, G. Lu, and H. Zhou. 2022. Nonlinear impulsive and vibration analysis of nonlocal FG-CNT reinforced sandwich plate by considering agglomerations. European Journal of Mechanics - A/Solids 92:104485. doi:10.1016/j.euromechsol.2021.104485.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.