174
Views
10
CrossRef citations to date
0
Altmetric
Articles

On the natural frequencies of smart circular plates with magnetorheological fluid core embedded between magnetostrictive patches on Kerr elastic substance

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1651-1668 | Received 14 Sep 2022, Accepted 05 Dec 2022, Published online: 29 Dec 2022

References

  • Aguib, S., A. Nour, H. Zahloul, G. Bossis, Y. Chevalier, and P. Lançon. 2014. Dynamic behavior analysis of a magnetorheological elastomer sandwich plate. International Journal of Mechanical Sciences 87 (October):118–36. doi:10.1016/j.ijmecsci.2014.05.014.
  • Amir, S., E. Arshid, Z. K. Maraghi, A. Loghman, and A. Ghorbanpour Arani. 2020. Vibration analysis of magnetorheological fluid circular sandwich plates with magnetostrictive facesheets exposed to monotonic magnetic field located on visco-Pasternak substrate. Journal of Vibration and Control 26 (17–18):1523–37. doi:10.1177/1077546319899203.
  • Amir, S., E. Arshid, and Z. K. Maraghi. 2020. Free vibration analysis of magneto-rheological smart annular three-layered plates subjected to magnetic field in viscoelastic medium. Smart Structures and Systems 25 (5):581–92. doi:10.12989/sss.2020.25.5.581.
  • Ansari, R., A. Shahabodini, A. Alipour, and H. Rouhi. 2012. Stability of a single-layer graphene sheet with various edge conditions: a non-local plate model including interatomic potentials. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems 226 (2):51–60. doi:10.1177/1740349912451209.
  • Arshid, E., and A. R. Khorshidvand. 2018. Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method. Thin-Walled Structures 125 (January):220–33. doi:10.1016/j.tws.2018.01.007.
  • Arshid, E., A. Kiani, and S. Amir. 2019. Magneto-electro-elastic vibration of moderately thick FG annular plates subjected to multi physical loads in thermal environment using GDQ method by considering neutral surface. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 233 (10):2140–59. doi:10.1177/1464420719832626.
  • Azimi, S. 1988. Free vibration of circular plates with elastic edge supports using the receptance method. Journal of Sound and Vibration 120 (1):19–35. doi:10.1016/0022-460X(88)90332-X.
  • Babu, V. R., and R. Vasudevan. 2016. Dynamic analysis of tapered laminated composite magnetorheological elastomer (MRE) sandwich plates. Smart Materials and Structures 25 (3):035006. doi:10.1088/0964-1726/25/3/035006.
  • Bayat, R., A. A. Jafari, and O. Rahmani. 2015. Analytical solution for free vibration of laminated curved beam with magnetostrictive layers. International Journal of Applied Mechanics 7 (3):1550050. doi:10.1142/S1758825115500507.
  • Ebrahimi, F., and A. Dabbagh. 2018a. Thermo-magnetic field effects on the wave propagation behavior of smart magnetostrictive sandwich nanoplates. The European Physical Journal Plus 133 (3):97. doi:10.1140/epjp/i2018-11910-7.
  • Ebrahimi, F., and A. Dabbagh. 2018b. Wave propagation analysis of magnetostrictive sandwich composite nanoplates via nonlocal strain gradient theory. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 232 (22):4180–92. doi:10.1177/0954406217748687.
  • Eshaghi, M., R. Sedaghati, and S. Rakheja. 2015. The effect of magneto-rheological fluid on vibration suppression capability of adaptive sandwich plates: experimental and finite element analysis. Journal of Intelligent Material Systems and Structures 26 (14):1920–35. doi:10.1177/1045389X15586449.
  • Eshaghi, M., R. Sedaghati, and S. Rakheja. 2016. Analytical and experimental free vibration analysis of multi-layer MR-fluid circular plates under varying magnetic flux. Composite Structures 157:78–86. doi:10.1016/j.compstruct.2016.08.024.
  • Fadaee, M. 2019. A new reformulation of vibration suppression equations of functionally graded magnetorheological fluid sandwich beam. Applied Mathematical Modelling 74:469–82. doi:10.1016/j.apm.2019.05.016.
  • Fan, X., G. Wei, X. Lin, X. Wang, Z. Si, X. Zhang, Q. Shao, S. Mangin, E. Fullerton, L. Jiang, et al. 2020. Reversible switching of interlayer exchange coupling through atomically thin VO2 via electronic state modulation. Matter 2 (6):1582–93. doi:10.1016/j.matt.2020.04.001.
  • Ghafouri, M., M. Ghassabi, M. Reza Zarastvand, and R. Talebitooti. 2022. Sound propagation of three-dimensional sandwich panels: influence of three-dimensional re-entrant auxetic core. AIAA Journal 60 (11):6374–84. doi:10.2514/1.J061219.
  • Ghorbanpour Arani, A., and M. Abdollahian. 2019. Transient response of FG higher-order nanobeams integrated with magnetostrictive layers using modified couple stress theory. Mechanics of Advanced Materials and Structures 26 (4):359–71. doi:10.1080/15376494.2017.13873.
  • Ghorbanpour Arani, A., and Z. Khoddami Maraghi. 2016. A feedback control system for vibration of magnetostrictive plate subjected to follower force using sinusoidal shear deformation theory. Ain Shams Engineering Journal 7 (1):361–9. doi:10.1016/j.asej.2015.04.010.
  • Ghorbanpour Arani, A., Z. K. Maraghi, and H. Khani Arani. 2017. Vibration control of magnetostrictive plate under multi-physical loads via trigonometric higher order shear deformation theory. Journal of Vibration and Control 23 (19):3057–70. doi:10.1177/1077546315588222.
  • Ghorbanpour Arani, A., A. R. Shajari, S. Amir, and V. Atabakhshian. 2013. Nonlinear fluid-induced vibration and instability of an embedded piezoelectric polymeric microtube using nonlocal elasticity theory. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 227 (12):2870–85. doi:10.1177/0954406213479094.
  • Ghorbanpour Arani, A., and T. Soleymani. 2019. Size-dependent vibration analysis of a rotating MR sandwich beam with varying cross section in supersonic airflow. International Journal of Mechanical Sciences 151 (June 2018):288–99. doi:10.1016/j.ijmecsci.2018.11.024.
  • Guan, H., S. Huang, J. Ding, F. Tian, Q. Xu, and J. Zhao. 2020. Chemical environment and magnetic moment effects on point defect formations in CoCrNi-based concentrated solid-solution alloys. Acta Materialia 187 (April):122–34. doi:10.1016/j.actamat.2020.01.044.
  • Hao, R. B., Z. Q. Lu, H. Ding, and L. Q. Chen. 2022. A nonlinear vibration isolator supported on a flexible plate: analysis and experiment. Nonlinear Dynamics 108 (2):941–58. doi:10.1007/s11071-022-07243-7.
  • Houshangi, A., A. Asghar, S. Etemadi, and M. Nezami. 2022. Thin-walled structures supersonic flutter characteristics of truncated sandwich conical shells with MR core. Thin-Walled Structures 173 (December 2021):108888. doi:10.1016/j.tws.2022.108888.
  • Jones, R., and J. Xenophontos. 1976. On the Vlasov and Kerr foundation models. Acta Mechanica 25 (1):45–9. doi:10.1007/BF01176928.
  • Kargar, J., A. Ghorbanpour Arani, E. Arshid, and M. Irani Rahaghi. 2021. Vibration analysis of spherical sandwich panels with MR fluids core and magneto-electro-elastic face sheets resting on orthotropic viscoelastic foundation. Structural Engineering and Mechanics 78 (5):572. doi:10.12989/SEM.2021.78.5.557.
  • Karimiasl, M., F. Ebrahimi, and V. Mahesh. 2019. Nonlinear forced vibration of smart multiscale sandwich composite doubly curved porous shell. Thin-Walled Structures 143:106152. doi:10.1016/j.tws.2019.04.044.
  • Lal, R., and N. Ahlawat. 2015. Axisymmetric vibrations and buckling analysis of functionally graded circular plates via differential transform method. European Journal of Mechanics – A/Solids 52 (July):85–94. doi:10.1016/j.euromechsol.2015.02.004.
  • Lara-Prieto, V., R. Parkin, M. Jackson, V. Silberschmidt, and Z. Kęsy. 2010. Vibration characteristics of MR cantilever sandwich beams: experimental study. Smart Materials and Structures 19 (1):015005. doi:10.1088/0964-1726/19/1/015005.
  • Leissa, A. W. 1969. Vibration of plates. Washington, DC: National Aeronautics and Space Administration.
  • Li, R., and L. Z. Sun. 2014. Dynamic viscoelastic modeling of magnetorheological elastomers. Acta Mechanica 225 (4–5):1347–59. doi:10.1007/s00707-013-1051-7.
  • Liu, Z., S. Su, D. Xi, and M. Habibi. 2022. Vibrational responses of a MHC viscoelastic thick annular plate in thermal environment using GDQ method. Mechanics Based Design of Structures and Machines 50 (8):2688–713. doi:10.1080/15397734.2020.1784201.
  • Lu, C., R. Zhu, F. Yu, X. Jiang, Z. Liu, L. Dong, Q. Hua, and Z. Ou. 2021. Gear rotational speed sensor based on FeCoSiB/Pb(Zr,Ti)O3 magnetoelectric composite. Measurement 168 (January):108409. doi:10.1016/j.measurement.2020.108409.
  • Ma, L. S., and T. J. Wang. 2004. Relationships between axisymmetric bending and buckling solutions of FGM circular plates based on third-order plate theory and classical plate theory. International Journal of Solids and Structures 41 (1):85–101. doi:10.1016/j.ijsolstr.2003.09.008.
  • MalekzadehFard, K., M. Gholami, F. Reshadi, and M. Livani. 2017. Free vibration and buckling analyses of cylindrical sandwich panel with magneto rheological fluid layer. Journal of Sandwich Structures & Materials 19 (4):397–423. doi:10.1177/1099636215603034.
  • Manoharan, R., R. Vasudevan, and A. K. Jeevanantham. 2014. Dynamic characterization of a laminated composite magnetorheological fluid sandwich plate. Smart Materials and Structures 23 (2):025022. doi:10.1088/0964-1726/23/2/025022.
  • Mohammadrezazadeh, S., and A. A. Jafari. 2020. Vibration control of laminated truncated conical shell via magnetostrictive layers. Mechanics of Advanced Materials and Structures 27 (20):1756–64. doi:10.1080/15376494.2018.1525627.
  • Mohammadrezazadeh, S., and A. A. Jafari. 2021. Nonlinear vibration suppression of S-S and C-C laminated composite cylindrical shells with magnetostrictive strips. Mechanics Based Design of Structures and Machines 1–22. doi:10.1080/15397734.2021.2004163.
  • Naji, J., A. Zabihollah, and M. Behzad. 2016. Layerwise theory in modeling of magnetorheological laminated beams and identification of magnetorheological fluid. Mechanics Research Communications 77 (October):50–9. doi:10.1016/j.mechrescom.2016.09.003.
  • Naji, J., A. Zabihollah, and M. Behzad. 2018. Vibration characteristics of laminated composite beams with magnetorheological layer using layerwise theory. Mechanics of Advanced Materials and Structures 25 (3):202–11. doi:10.1080/15376494.2016.1255819.
  • Navazi, H. M., S. Bornassi, and H. Haddadpour. 2017. Vibration analysis of a rotating magnetorheological tapered sandwich beam. International Journal of Mechanical Sciences 122 (March 2016):308–17. doi:10.1016/j.ijmecsci.2017.01.016.
  • Omidi Soroor, A., M. Asgari, and H. Haddadpour. 2021. Effect of axially graded constraining layer on the free vibration properties of three layered sandwich beams with magnetorheological fluid core. Composite Structures 255 (August 2020):112899. doi:10.1016/j.compstruct.2020.112899.
  • Rahmatnezhad, K., M. R. Zarastvand, and R. Talebitooti. 2021. Mechanism study and power transmission feature of acoustically stimulated and thermally loaded composite shell structures with double curvature. Composite Structures 276:114557. Elsevier doi:10.1016/j.compstruct.2021.114557.
  • Ramamoorthy, M., V. Rajamohan, and J. Ak. 2016. Vibration analysis of a partially treated laminated composite magnetorheological fluid sandwich plate. Journal of Vibration and Control 22 (3):869–95. doi:10.1177/1077546314532302.
  • Safarpour, M., A. R. Rahimi, and A. Alibeigloo. 2020. Static and free vibration analysis of graphene platelets reinforced composite truncated conical shell, cylindrical shell, and annular plate using theory of elasticity and DQM. Mechanics Based Design of Structures and Machines 48 (4):496–524. doi:10.1080/15397734.2019.1646137.
  • Selvaraj, R., and M. Ramamoorthy. 2022. Experimental and finite element vibration analysis of CNT reinforced MR elastomer sandwich beam. Mechanics Based Design of Structures and Machines 50 (7):2414–26. doi:10.1080/15397734.2020.1778487.
  • Sofiyev, A. H., F. Tornabene, R. Dimitri, and N. Kuruoglu. 2020. Buckling behavior of FG-CNT reinforced composite conical shells subjected to a combined loading. Nanomaterials 10 (3):419. doi:10.3390/nano10030419.
  • Soleymani, T., and A. Ghorbanpour Arani. 2019. On aeroelastic stability of a piezo-MRE sandwich plate in supersonic airflow. Composite Structures 230 (October):111532. doi:10.1016/j.compstruct.2019.111532.
  • Suman, S. D., C. K. Hirwani, A. Chaturvedi, and S. K. Panda. 2017. Effect of magnetostrictive material layer on the stress and deformation behaviour of laminated structure. IOP Conference Series: Materials Science and Engineering 178 (1):012026. doi:10.1088/1757-899X/178/1/012026.
  • Tornabene, F., N. Fantuzzi, E. Viola, and J. N. Reddy. 2014. Winkler–Pasternak foundation effect on the static and dynamic analyses of laminated doubly-curved and degenerate shells and panels. Composites Part B: Engineering 57 (February):269–96. doi:10.1016/j.compositesb.2013.06.020.
  • Tornabene, F., M. Viscoti, and R. Dimitri. 2022. Static analysis of anisotropic doubly-curved shells with arbitrary geometry and variable thickness resting on a Winkler-Pasternak support and subjected to general loads. Engineering Analysis with Boundary Elements 140 (July):618–73. doi:10.1016/j.enganabound.2022.02.021.
  • Tzou, H. S., H. J. Lee, and S. M. Arnold. 2004. Smart materials, precision sensors/actuators, smart structures, and structronic systems. Mechanics of Advanced Materials and Structures 11 (4–5):367–93. doi:10.1080/15376490490451552.
  • Wang, Y., R. Zeng, and M. Safarpour. 2022. Vibration analysis of FG-GPLRC annular plate in a thermal environment. Mechanics Based Design of Structures and Machines 50 (1):352–70. doi:10.1080/15397734.2020.1719508.
  • Wu, T. Y., Y. Y. Wang, and G. R. Liu. 2002. Free vibration analysis of circular plates using generalized differential quadrature rule. Computer Methods in Applied Mechanics and Engineering 191 (46):5365–80. doi:10.1016/S0045-7825(02)00463-2.
  • Yeh, J.-Y. 2013. Vibration analysis of sandwich rectangular plates with magnetorheological elastomer damping treatment. Smart Materials and Structures 22 (3):035010. doi:10.1088/0964-1726/22/3/035010.
  • Yeh, J.-Y. 2014. Vibration characteristics analysis of orthotropic rectangular sandwich plate with magnetorheological elastomer. Procedia Engineering 79 (January):378–85. doi:10.1016/j.proeng.2014.06.358.
  • Zarastvand, M. R., M. H. Asadijafari, and R. Talebitooti. 2022. Acoustic wave transmission characteristics of stiffened composite shell systems with double curvature. Composite Structures 292 (July):115688. Elsevier doi:10.1016/j.compstruct.2022.115688.
  • Zarastvand, M. R., M. Ghassabi, and R. Talebitooti. 2022. Prediction of acoustic wave transmission features of the multilayered plate constructions: a review. Journal of Sandwich Structures & Materials 24 (1):218–93. doi:10.1177/1099636221993891.
  • Zenkour, A. M., and H. D. El-Shahrany. 2021. Control of hygrothermal vibration of viscoelastic magnetostrictive laminates resting on Kerr’s foundation. Mechanics Based Design of Structures and Machines 1–29. doi:10.1080/15397734.2021.1929314.
  • Zhang, G., J. Chen, Z. Zhang, M. Sun, Y. Yu, J. Wang, and S. Cai. 2022. Analysis of magnetorheological clutch with double cup-shaped gap excited by halbach array based on finite element method and experiment. Smart Materials and Structures 31 (7):075008. doi:10.1088/1361-665X/ac701a.
  • Zhang, L., G. T. Wu, and J. Wu. 2019. A Kerr‐type elastic foundation model for the buckling analysis of a beam bonded on an elastic layer. ZAMM – Journal of Applied Mathematics and Mechanics/Zeitschrift Für Angewandte Mathematik Und Mechanik 99 (10):e201900162. doi:10.1002/zamm.201900162.
  • Zhang, G., Z. Zhang, M. Sun, Y. Yu, J. Wang, and S. Cai. 2022. The influence of the temperature on the dynamic behaviors of magnetorheological gel. Advanced Engineering Materials 24 (9):2101680. doi:10.1002/adem.202101680.
  • Zhao, R., H. Dai, and H. Yao. 2022. Liquid-metal magnetic soft robot with reprogrammable magnetization and stiffness. IEEE Robotics and Automation Letters 7 (2):4535–41. doi:10.1109/LRA.2022.3151164.
  • Zhou, H., C. Xu, C. Lu, X. Jiang, Z. Zhang, J. Wang, X. Xiao, M. Xin, and L. Wang. 2021. Investigation of transient magnetoelectric response of magnetostrictive/piezoelectric composite applicable for lightning current sensing. Sensors and Actuators A: Physical 329 (October):112789. doi:10.1016/j.sna.2021.112789.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.